10 KiB
comments |
---|
true |
4.1. 数组
「数组 Array」是一种将 相同类型元素 存储在 连续内存空间 的数据结构,将元素在数组中的位置称为元素的「索引 Index」。
Fig. 数组定义与存储方式
!!! note
观察上图,我们发现 **数组首元素的索引为 $0$** 。你可能会想,这并不符合日常习惯,首个元素的索引为什么不是 $1$ 呢,这不是更加自然吗?我认同你的想法,但请先记住这个设定,后面讲内存地址计算时,我会尝试解答这个问题。
数组初始化。一般会用到无初始值、给定初始值两种写法,可根据需求选取。在不给定初始值的情况下,一般所有元素会被初始化为默认值 0
。
=== "Java"
```java title="array.java"
/* 初始化数组 */
int[] arr = new int[5]; // { 0, 0, 0, 0, 0 }
int[] nums = { 1, 3, 2, 5, 4 };
```
=== "C++"
```cpp title="array.cpp"
/* 初始化数组 */
// 存储在栈上
int arr[5];
int nums[5] { 1, 3, 2, 5, 4 };
// 存储在堆上
int* arr1 = new int[5];
int* nums1 = new int[5] { 1, 3, 2, 5, 4 };
```
=== "Python"
```python title="array.py"
""" 初始化数组 """
arr = [0] * 5 # [ 0, 0, 0, 0, 0 ]
nums = [1, 3, 2, 5, 4]
```
=== "Go"
```go title="array.go"
/* 初始化数组 */
var arr [5]int
// 在 Go 中,指定长度时([5]int)为数组,不指定长度时([]int)为切片
// 由于 Go 的数组被设计为在编译期确定长度,因此只能使用常量来指定长度
// 为了方便实现扩容 extend() 方法,以下将切片(Slice)看作数组(Array)
nums := []int{1, 3, 2, 5, 4}
```
=== "JavaScript"
```javascript title="array.js"
/* 初始化数组 */
var arr = new Array(5).fill(0);
var nums = [1, 3, 2, 5, 4];
```
=== "TypeScript"
```typescript title="array.ts"
/* 初始化数组 */
let arr: number[] = new Array(5).fill(0);
let nums: number[] = [1, 3, 2, 5, 4];
```
=== "C"
```c title="array.c"
int arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }
int nums[5] = { 1, 3, 2, 5, 4 };
```
=== "C#"
```csharp title="array.cs"
/* 初始化数组 */
int[] arr = new int[5]; // { 0, 0, 0, 0, 0 }
int[] nums = { 1, 3, 2, 5, 4 };
```
=== "Swift"
```swift title="array.swift"
/* 初始化数组 */
let arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]
let nums = [1, 3, 2, 5, 4]
```
=== "Zig"
```zig title="array.zig"
// 初始化数组
var arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }
var nums = [_]i32{ 1, 3, 2, 5, 4 };
```
4.1.1. 数组优点
在数组中访问元素非常高效。这是因为在数组中,计算元素的内存地址非常容易。给定数组首个元素的地址、和一个元素的索引,利用以下公式可以直接计算得到该元素的内存地址,从而直接访问此元素。
Fig. 数组元素的内存地址计算
// 元素内存地址 = 数组内存地址 + 元素长度 * 元素索引
elementAddr = firtstElementAddr + elementLength * elementIndex
为什么数组元素索引从 0 开始编号? 根据地址计算公式,索引本质上表示的是内存地址偏移量,首个元素的地址偏移量是 0
,那么索引是 0
也就很自然了。
访问元素的高效性带来了许多便利。例如,我们可以在 O(1)
时间内随机获取一个数组中的元素。
=== "Java"
```java title="array.java"
[class]{array}-[func]{randomAccess}
```
=== "C++"
```cpp title="array.cpp"
[class]{}-[func]{randomAccess}
```
=== "Python"
```python title="array.py"
[class]{}-[func]{random_access}
```
=== "Go"
```go title="array.go"
[class]{}-[func]{randomAccess}
```
=== "JavaScript"
```javascript title="array.js"
[class]{}-[func]{randomAccess}
```
=== "TypeScript"
```typescript title="array.ts"
[class]{}-[func]{randomAccess}
```
=== "C"
```c title="array.c"
[class]{}-[func]{randomAccess}
```
=== "C#"
```csharp title="array.cs"
[class]{array}-[func]{randomAccess}
```
=== "Swift"
```swift title="array.swift"
[class]{}-[func]{randomAccess}
```
=== "Zig"
```zig title="array.zig"
[class]{}-[func]{randomAccess}
```
4.1.2. 数组缺点
数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗时的。
=== "Java"
```java title="array.java"
[class]{array}-[func]{extend}
```
=== "C++"
```cpp title="array.cpp"
[class]{}-[func]{extend}
```
=== "Python"
```python title="array.py"
[class]{}-[func]{extend}
```
=== "Go"
```go title="array.go"
[class]{}-[func]{extend}
```
=== "JavaScript"
```javascript title="array.js"
[class]{}-[func]{extend}
```
=== "TypeScript"
```typescript title="array.ts"
[class]{}-[func]{extend}
```
=== "C"
```c title="array.c"
[class]{}-[func]{extend}
```
=== "C#"
```csharp title="array.cs"
[class]{array}-[func]{extend}
```
=== "Swift"
```swift title="array.swift"
[class]{}-[func]{extend}
```
=== "Zig"
```zig title="array.zig"
[class]{}-[func]{extend}
```
数组中插入或删除元素效率低下。假设我们想要在数组中间某位置插入一个元素,由于数组元素在内存中是“紧挨着的”,它们之间没有空间再放任何数据。因此,我们不得不将此索引之后的所有元素都向后移动一位,然后再把元素赋值给该索引。删除元素也是类似,需要把此索引之后的元素都向前移动一位。总体看有以下缺点:
- 时间复杂度高:数组的插入和删除的平均时间复杂度均为
O(N)
,其中N
为数组长度。 - 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。
- 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是我们不关心的,但这样做同时也会造成内存空间的浪费。
Fig. 在数组中插入与删除元素
=== "Java"
```java title="array.java"
[class]{array}-[func]{insert}
[class]{array}-[func]{remove}
```
=== "C++"
```cpp title="array.cpp"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "Python"
```python title="array.py"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "Go"
```go title="array.go"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "JavaScript"
```javascript title="array.js"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "TypeScript"
```typescript title="array.ts"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "C"
```c title="array.c"
[class]{}-[func]{insert}
[class]{}-[func]{removeItem}
```
=== "C#"
```csharp title="array.cs"
[class]{array}-[func]{insert}
[class]{array}-[func]{remove}
```
=== "Swift"
```swift title="array.swift"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
=== "Zig"
```zig title="array.zig"
[class]{}-[func]{insert}
[class]{}-[func]{remove}
```
4.1.3. 数组常用操作
数组遍历。以下介绍两种常用的遍历方法。
=== "Java"
```java title="array.java"
[class]{array}-[func]{traverse}
```
=== "C++"
```cpp title="array.cpp"
[class]{}-[func]{traverse}
```
=== "Python"
```python title="array.py"
[class]{}-[func]{traverse}
```
=== "Go"
```go title="array.go"
[class]{}-[func]{traverse}
```
=== "JavaScript"
```javascript title="array.js"
[class]{}-[func]{traverse}
```
=== "TypeScript"
```typescript title="array.ts"
[class]{}-[func]{traverse}
```
=== "C"
```c title="array.c"
[class]{}-[func]{traverse}
```
=== "C#"
```csharp title="array.cs"
[class]{array}-[func]{traverse}
```
=== "Swift"
```swift title="array.swift"
[class]{}-[func]{traverse}
```
=== "Zig"
```zig title="array.zig"
[class]{}-[func]{traverse}
```
数组查找。通过遍历数组,查找数组内的指定元素,并输出对应索引。
=== "Java"
```java title="array.java"
[class]{array}-[func]{find}
```
=== "C++"
```cpp title="array.cpp"
[class]{}-[func]{find}
```
=== "Python"
```python title="array.py"
[class]{}-[func]{find}
```
=== "Go"
```go title="array.go"
[class]{}-[func]{find}
```
=== "JavaScript"
```javascript title="array.js"
[class]{}-[func]{find}
```
=== "TypeScript"
```typescript title="array.ts"
[class]{}-[func]{find}
```
=== "C"
```c title="array.c"
[class]{}-[func]{find}
```
=== "C#"
```csharp title="array.cs"
[class]{array}-[func]{find}
```
=== "Swift"
```swift title="array.swift"
[class]{}-[func]{find}
```
=== "Zig"
```zig title="array.zig"
[class]{}-[func]{find}
```
4.1.4. 数组典型应用
随机访问。如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取。
二分查找。例如前文查字典的例子,我们可以将字典中的所有字按照拼音顺序存储在数组中,然后使用与日常查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。
深度学习。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。