You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_backtracking/n_queens_problem/index.html

3769 lines
220 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_backtracking/n_queens_problem/">
<link rel="prev" href="../subset_sum_problem/">
<link rel="next" href="../summary/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.2.0-b0">
<title>13.4.   N 皇后问题 - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.0c456da8.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.ecc896b0.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#134-n" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
13.4. &nbsp; N 皇后问题
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
0. &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
0. &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1. &nbsp; 关于本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2. &nbsp; 如何使用本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m14.6 16.6 4.6-4.6-4.6-4.6L16 6l6 6-6 6-1.4-1.4m-5.2 0L4.8 12l4.6-4.6L8 6l-6 6 6 6 1.4-1.4Z"/></svg>
<span class="md-ellipsis">
1. &nbsp; 初识算法
</span>
</a>
<label class="md-nav__link " for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
1. &nbsp; 初识算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1. &nbsp; 算法无处不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2. &nbsp; 算法是什么
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
2. &nbsp; 复杂度
</span>
</a>
<label class="md-nav__link " for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
2. &nbsp; 复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1. &nbsp; 算法效率评估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.2. &nbsp; 时间复杂度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3. &nbsp; 空间复杂度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 3C7.58 3 4 4.79 4 7v10c0 2.21 3.59 4 8 4s8-1.79 8-4V7c0-2.21-3.58-4-8-4m6 14c0 .5-2.13 2-6 2s-6-1.5-6-2v-2.23c1.61.78 3.72 1.23 6 1.23s4.39-.45 6-1.23V17m0-4.55c-1.3.95-3.58 1.55-6 1.55s-4.7-.6-6-1.55V9.64c1.47.83 3.61 1.36 6 1.36s4.53-.53 6-1.36v2.81M12 9C8.13 9 6 7.5 6 7s2.13-2 6-2 6 1.5 6 2-2.13 2-6 2Z"/></svg>
<span class="md-ellipsis">
3. &nbsp; 数据结构
</span>
</a>
<label class="md-nav__link " for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
3. &nbsp; 数据结构
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1. &nbsp; 数据结构分类
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2. &nbsp; 基本数据类型
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3. &nbsp; 数字编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4. &nbsp; 字符编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 11h8V3H3m2 2h4v4H5m8 12h8v-8h-8m2 2h4v4h-4M3 21h8v-8H3m2 2h4v4H5m8-16v8h8V3m-2 6h-4V5h4Z"/></svg>
<span class="md-ellipsis">
4. &nbsp; 数组与链表
</span>
</a>
<label class="md-nav__link " for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
4. &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1. &nbsp; 数组
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2. &nbsp; 链表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3. &nbsp; 列表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
5. &nbsp; 栈与队列
</span>
</a>
<label class="md-nav__link " for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
5. &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1. &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2. &nbsp; 队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3. &nbsp; 双向队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
6. &nbsp; 散列表
</span>
</a>
<label class="md-nav__link " for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1. &nbsp; 哈希表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2. &nbsp; 哈希冲突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3. &nbsp; 哈希算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
7. &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1. &nbsp; 二叉树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2. &nbsp; 二叉树遍历
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3. &nbsp; 二叉树数组表示
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4. &nbsp; 二叉搜索树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5. &nbsp; AVL 树 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
8. &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1. &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2. &nbsp; 建堆操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3. &nbsp; Top-K 问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
9. &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1. &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2. &nbsp; 图基础操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3. &nbsp; 图的遍历
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
10. &nbsp; 搜索
</span>
</a>
<label class="md-nav__link " for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1. &nbsp; 二分查找
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.2. &nbsp; 二分查找边界
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.3. &nbsp; 哈希优化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.4. &nbsp; 重识搜索算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.5. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
11. &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
11. &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1. &nbsp; 排序算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2. &nbsp; 选择排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3. &nbsp; 冒泡排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4. &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5. &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6. &nbsp; 归并排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7. &nbsp; 堆排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8. &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9. &nbsp; 计数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10. &nbsp; 基数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 13H7v5h5v2H5V10h2v1h5v2M8 4v2H4V4h4m2-2H2v6h8V2m10 9v2h-4v-2h4m2-2h-8v6h8V9m-2 9v2h-4v-2h4m2-2h-8v6h8v-6Z"/></svg>
<span class="md-ellipsis">
12. &nbsp; 分治
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
<label class="md-nav__link " for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1. &nbsp; 分治算法
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2. &nbsp; 分治搜索策略
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3. &nbsp; 构建树问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4. &nbsp; 汉诺塔问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
13. &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_14">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1. &nbsp; 回溯算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2. &nbsp; 全排列问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3. &nbsp; 子集和问题
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
13.4. &nbsp; N 皇后问题
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
13.4. &nbsp; N 皇后问题
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1341" class="md-nav__link">
13.4.1. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5. &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
14. &nbsp; 动态规划
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
<label class="md-nav__link " for="__nav_15">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
14. &nbsp; 动态规划
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1. &nbsp; 初探动态规划
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2. &nbsp; DP 问题特性
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3. &nbsp; DP 解题思路
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4. &nbsp; 0-1 背包问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5. &nbsp; 完全背包问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6. &nbsp; 编辑距离问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7. &nbsp; 小结
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
15. &nbsp; 附录
</span>
</a>
<label class="md-nav__link " for="__nav_16">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
15. &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
15.1. &nbsp; 编程环境安装
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
15.2. &nbsp; 一起参与创作
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<span class="md-ellipsis">
参考文献
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1341" class="md-nav__link">
13.4.1. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_backtracking/n_queens_problem.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="134-n">13.4. &nbsp; N 皇后问题<a class="headerlink" href="#134-n" title="Permanent link">&para;</a></h1>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 <span class="arithmatex">\(n\)</span> 个皇后和一个 <span class="arithmatex">\(n \times n\)</span> 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。</p>
</div>
<p>如下图所示,当 <span class="arithmatex">\(n = 4\)</span> 时,共可以找到两个解。从回溯算法的角度看,<span class="arithmatex">\(n \times n\)</span> 大小的棋盘共有 <span class="arithmatex">\(n^2\)</span> 个格子,给出了所有的选择 <code>choices</code> 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 <code>state</code></p>
<p><img alt="4 皇后问题的解" src="../n_queens_problem.assets/solution_4_queens.png" /></p>
<p align="center"> Fig. 4 皇后问题的解 </p>
<p>本题共有三个约束条件:<strong>多个皇后不能在同一行、同一列和同一对角线</strong>。值得注意的是,对角线分为主对角线 <code>\</code> 和副对角线 <code>/</code> 两种。</p>
<p><img alt="n 皇后问题的约束条件" src="../n_queens_problem.assets/n_queens_constraints.png" /></p>
<p align="center"> Fig. n 皇后问题的约束条件 </p>
<p>皇后的数量和棋盘的行数都为 <span class="arithmatex">\(n\)</span> ,因此我们容易得到第一个推论:<strong>棋盘每行都允许且只允许放置一个皇后</strong>。这意味着,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。<strong>此策略起到了剪枝的作用</strong>,它避免了同一行出现多个皇后的所有搜索分支。</p>
<p>下图展示了 <span class="arithmatex">\(4\)</span> 皇后问题的逐行放置过程。受篇幅限制,下图仅展开了第一行的一个搜索分支。在搜索过程中,我们将不满足列约束和对角线约束的方案都剪枝了。</p>
<p><img alt="逐行放置策略" src="../n_queens_problem.assets/n_queens_placing.png" /></p>
<p align="center"> Fig. 逐行放置策略 </p>
<p>为了实现根据列约束剪枝,我们可以利用一个长度为 <span class="arithmatex">\(n\)</span> 的布尔型数组 <code>cols</code> 记录每一列是否有皇后。在每次决定放置前,我们通过 <code>cols</code> 将已有皇后的列剪枝,并在回溯中动态更新 <code>cols</code> 的状态。</p>
<p>那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 <code>(row, col)</code> ,观察矩阵的某条主对角线,<strong>我们发现该对角线上所有格子的行索引减列索引相等</strong>,即 <code>row - col</code> 为恒定值。换句话说,若两个格子满足 <code>row1 - col1 == row2 - col2</code> ,则这两个格子一定处在一条主对角线上。</p>
<p>利用该性质,我们可以借助一个数组 <code>diag1</code> 来记录每条主对角线上是否有皇后。注意,<span class="arithmatex">\(n\)</span> 维方阵 <code>row - col</code> 的范围是 <span class="arithmatex">\([-n + 1, n - 1]\)</span> ,因此共有 <span class="arithmatex">\(2n - 1\)</span> 条主对角线。</p>
<p><img alt="处理列约束和对角线约束" src="../n_queens_problem.assets/n_queens_cols_diagonals.png" /></p>
<p align="center"> Fig. 处理列约束和对角线约束 </p>
<p>同理,<strong>次对角线上的所有格子的 <code>row + col</code> 是恒定值</strong>。我们可以使用同样的方法,借助数组 <code>diag2</code> 来处理次对角线约束。</p>
<p>根据以上分析,我们便可以写出 <span class="arithmatex">\(n\)</span> 皇后的解题代码。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:11"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">);</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-0-26" name="__codelineno-0-26" href="#__codelineno-0-26"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-0-27" name="__codelineno-0-27" href="#__codelineno-0-27"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-0-28" name="__codelineno-0-28" href="#__codelineno-0-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-29" name="__codelineno-0-29" href="#__codelineno-0-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-30" name="__codelineno-0-30" href="#__codelineno-0-30"></a><span class="p">}</span>
<a id="__codelineno-0-31" name="__codelineno-0-31" href="#__codelineno-0-31"></a>
<a id="__codelineno-0-32" name="__codelineno-0-32" href="#__codelineno-0-32"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-0-33" name="__codelineno-0-33" href="#__codelineno-0-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-34" name="__codelineno-0-34" href="#__codelineno-0-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-0-35" name="__codelineno-0-35" href="#__codelineno-0-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-36" name="__codelineno-0-36" href="#__codelineno-0-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-37" name="__codelineno-0-37" href="#__codelineno-0-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-38" name="__codelineno-0-38" href="#__codelineno-0-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-39" name="__codelineno-0-39" href="#__codelineno-0-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-0-40" name="__codelineno-0-40" href="#__codelineno-0-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-41" name="__codelineno-0-41" href="#__codelineno-0-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-0-42" name="__codelineno-0-42" href="#__codelineno-0-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-43" name="__codelineno-0-43" href="#__codelineno-0-43"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-0-44" name="__codelineno-0-44" href="#__codelineno-0-44"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-0-45" name="__codelineno-0-45" href="#__codelineno-0-45"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-0-46" name="__codelineno-0-46" href="#__codelineno-0-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-47" name="__codelineno-0-47" href="#__codelineno-0-47"></a>
<a id="__codelineno-0-48" name="__codelineno-0-48" href="#__codelineno-0-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-0-49" name="__codelineno-0-49" href="#__codelineno-0-49"></a>
<a id="__codelineno-0-50" name="__codelineno-0-50" href="#__codelineno-0-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-0-51" name="__codelineno-0-51" href="#__codelineno-0-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">state</span><span class="p">);</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-25" name="__codelineno-1-25" href="#__codelineno-1-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-26" name="__codelineno-1-26" href="#__codelineno-1-26"></a><span class="p">}</span>
<a id="__codelineno-1-27" name="__codelineno-1-27" href="#__codelineno-1-27"></a>
<a id="__codelineno-1-28" name="__codelineno-1-28" href="#__codelineno-1-28"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-1-29" name="__codelineno-1-29" href="#__codelineno-1-29"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-30" name="__codelineno-1-30" href="#__codelineno-1-30"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-1-31" name="__codelineno-1-31" href="#__codelineno-1-31"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-1-32" name="__codelineno-1-32" href="#__codelineno-1-32"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-1-33" name="__codelineno-1-33" href="#__codelineno-1-33"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-1-34" name="__codelineno-1-34" href="#__codelineno-1-34"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-1-35" name="__codelineno-1-35" href="#__codelineno-1-35"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-36" name="__codelineno-1-36" href="#__codelineno-1-36"></a>
<a id="__codelineno-1-37" name="__codelineno-1-37" href="#__codelineno-1-37"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-38" name="__codelineno-1-38" href="#__codelineno-1-38"></a>
<a id="__codelineno-1-39" name="__codelineno-1-39" href="#__codelineno-1-39"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-40" name="__codelineno-1-40" href="#__codelineno-1-40"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a> <span class="n">row</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="n">state</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="n">cols</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="n">diags1</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="n">diags2</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="p">):</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;回溯算法N 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="c1"># 当放置完所有行时,记录解</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="k">if</span> <span class="n">row</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="nb">list</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">state</span><span class="p">])</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a> <span class="k">return</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a> <span class="c1"># 遍历所有列</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a> <span class="c1"># 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a> <span class="n">diag1</span> <span class="o">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a> <span class="n">diag2</span> <span class="o">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a> <span class="c1"># 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a> <span class="k">if</span> <span class="ow">not</span> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]:</span>
<a id="__codelineno-2-22" name="__codelineno-2-22" href="#__codelineno-2-22"></a> <span class="c1"># 尝试:将皇后放置在该格子</span>
<a id="__codelineno-2-23" name="__codelineno-2-23" href="#__codelineno-2-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;Q&quot;</span>
<a id="__codelineno-2-24" name="__codelineno-2-24" href="#__codelineno-2-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<a id="__codelineno-2-25" name="__codelineno-2-25" href="#__codelineno-2-25"></a> <span class="c1"># 放置下一行</span>
<a id="__codelineno-2-26" name="__codelineno-2-26" href="#__codelineno-2-26"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-2-27" name="__codelineno-2-27" href="#__codelineno-2-27"></a> <span class="c1"># 回退:将该格子恢复为空位</span>
<a id="__codelineno-2-28" name="__codelineno-2-28" href="#__codelineno-2-28"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;#&quot;</span>
<a id="__codelineno-2-29" name="__codelineno-2-29" href="#__codelineno-2-29"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<a id="__codelineno-2-30" name="__codelineno-2-30" href="#__codelineno-2-30"></a>
<a id="__codelineno-2-31" name="__codelineno-2-31" href="#__codelineno-2-31"></a><span class="k">def</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]:</span>
<a id="__codelineno-2-32" name="__codelineno-2-32" href="#__codelineno-2-32"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;求解 N 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-2-33" name="__codelineno-2-33" href="#__codelineno-2-33"></a> <span class="c1"># 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-2-34" name="__codelineno-2-34" href="#__codelineno-2-34"></a> <span class="n">state</span> <span class="o">=</span> <span class="p">[[</span><span class="s2">&quot;#&quot;</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
<a id="__codelineno-2-35" name="__codelineno-2-35" href="#__codelineno-2-35"></a> <span class="n">cols</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="n">n</span> <span class="c1"># 记录列是否有皇后</span>
<a id="__codelineno-2-36" name="__codelineno-2-36" href="#__codelineno-2-36"></a> <span class="n">diags1</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录主对角线是否有皇后</span>
<a id="__codelineno-2-37" name="__codelineno-2-37" href="#__codelineno-2-37"></a> <span class="n">diags2</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录副对角线是否有皇后</span>
<a id="__codelineno-2-38" name="__codelineno-2-38" href="#__codelineno-2-38"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-2-39" name="__codelineno-2-39" href="#__codelineno-2-39"></a> <span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-2-40" name="__codelineno-2-40" href="#__codelineno-2-40"></a>
<a id="__codelineno-2-41" name="__codelineno-2-41" href="#__codelineno-2-41"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="p">}</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a>
<a id="__codelineno-3-32" name="__codelineno-3-32" href="#__codelineno-3-32"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-33" name="__codelineno-3-33" href="#__codelineno-3-33"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-34" name="__codelineno-3-34" href="#__codelineno-3-34"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-35" name="__codelineno-3-35" href="#__codelineno-3-35"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-36" name="__codelineno-3-36" href="#__codelineno-3-36"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-37" name="__codelineno-3-37" href="#__codelineno-3-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-38" name="__codelineno-3-38" href="#__codelineno-3-38"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-39" name="__codelineno-3-39" href="#__codelineno-3-39"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-40" name="__codelineno-3-40" href="#__codelineno-3-40"></a>
<a id="__codelineno-3-41" name="__codelineno-3-41" href="#__codelineno-3-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-42" name="__codelineno-3-42" href="#__codelineno-3-42"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-43" name="__codelineno-3-43" href="#__codelineno-3-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-44" name="__codelineno-3-44" href="#__codelineno-3-44"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-45" name="__codelineno-3-45" href="#__codelineno-3-45"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-46" name="__codelineno-3-46" href="#__codelineno-3-46"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-47" name="__codelineno-3-47" href="#__codelineno-3-47"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-48" name="__codelineno-3-48" href="#__codelineno-3-48"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-49" name="__codelineno-3-49" href="#__codelineno-3-49"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-3-50" name="__codelineno-3-50" href="#__codelineno-3-50"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-51" name="__codelineno-3-51" href="#__codelineno-3-51"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-52" name="__codelineno-3-52" href="#__codelineno-3-52"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-53" name="__codelineno-3-53" href="#__codelineno-3-53"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-54" name="__codelineno-3-54" href="#__codelineno-3-54"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-55" name="__codelineno-3-55" href="#__codelineno-3-55"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-56" name="__codelineno-3-56" href="#__codelineno-3-56"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-57" name="__codelineno-3-57" href="#__codelineno-3-57"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-58" name="__codelineno-3-58" href="#__codelineno-3-58"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-59" name="__codelineno-3-59" href="#__codelineno-3-59"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-60" name="__codelineno-3-60" href="#__codelineno-3-60"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-61" name="__codelineno-3-61" href="#__codelineno-3-61"></a><span class="p">}</span>
<a id="__codelineno-3-62" name="__codelineno-3-62" href="#__codelineno-3-62"></a>
<a id="__codelineno-3-63" name="__codelineno-3-63" href="#__codelineno-3-63"></a><span class="kd">func</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[][][]</span><span class="kt">string</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-64" name="__codelineno-3-64" href="#__codelineno-3-64"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-3-65" name="__codelineno-3-65" href="#__codelineno-3-65"></a><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-66" name="__codelineno-3-66" href="#__codelineno-3-66"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-67" name="__codelineno-3-67" href="#__codelineno-3-67"></a><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-68" name="__codelineno-3-68" href="#__codelineno-3-68"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-69" name="__codelineno-3-69" href="#__codelineno-3-69"></a><span class="w"> </span><span class="nx">row</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-70" name="__codelineno-3-70" href="#__codelineno-3-70"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-71" name="__codelineno-3-71" href="#__codelineno-3-71"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">row</span>
<a id="__codelineno-3-72" name="__codelineno-3-72" href="#__codelineno-3-72"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-73" name="__codelineno-3-73" href="#__codelineno-3-73"></a><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-3-74" name="__codelineno-3-74" href="#__codelineno-3-74"></a><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-75" name="__codelineno-3-75" href="#__codelineno-3-75"></a><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-76" name="__codelineno-3-76" href="#__codelineno-3-76"></a><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-77" name="__codelineno-3-77" href="#__codelineno-3-77"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-3-78" name="__codelineno-3-78" href="#__codelineno-3-78"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-79" name="__codelineno-3-79" href="#__codelineno-3-79"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-3-80" name="__codelineno-3-80" href="#__codelineno-3-80"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="p">}</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a>
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-4-31" name="__codelineno-4-31" href="#__codelineno-4-31"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-4-32" name="__codelineno-4-32" href="#__codelineno-4-32"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-4-33" name="__codelineno-4-33" href="#__codelineno-4-33"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-4-34" name="__codelineno-4-34" href="#__codelineno-4-34"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-4-35" name="__codelineno-4-35" href="#__codelineno-4-35"></a>
<a id="__codelineno-4-36" name="__codelineno-4-36" href="#__codelineno-4-36"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-37" name="__codelineno-4-37" href="#__codelineno-4-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-4-38" name="__codelineno-4-38" href="#__codelineno-4-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">row</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">state</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][],</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][],</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="nx">cols</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="nx">diags1</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="nx">diags2</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[]</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-33" name="__codelineno-5-33" href="#__codelineno-5-33"></a><span class="p">}</span>
<a id="__codelineno-5-34" name="__codelineno-5-34" href="#__codelineno-5-34"></a>
<a id="__codelineno-5-35" name="__codelineno-5-35" href="#__codelineno-5-35"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-5-36" name="__codelineno-5-36" href="#__codelineno-5-36"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-37" name="__codelineno-5-37" href="#__codelineno-5-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-5-38" name="__codelineno-5-38" href="#__codelineno-5-38"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-5-39" name="__codelineno-5-39" href="#__codelineno-5-39"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-5-40" name="__codelineno-5-40" href="#__codelineno-5-40"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-5-41" name="__codelineno-5-41" href="#__codelineno-5-41"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-5-42" name="__codelineno-5-42" href="#__codelineno-5-42"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-5-43" name="__codelineno-5-43" href="#__codelineno-5-43"></a>
<a id="__codelineno-5-44" name="__codelineno-5-44" href="#__codelineno-5-44"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-45" name="__codelineno-5-45" href="#__codelineno-5-45"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-5-46" name="__codelineno-5-46" href="#__codelineno-5-46"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">true</span><span class="p">;</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-7-27" name="__codelineno-7-27" href="#__codelineno-7-27"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">false</span><span class="p">;</span>
<a id="__codelineno-7-28" name="__codelineno-7-28" href="#__codelineno-7-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-29" name="__codelineno-7-29" href="#__codelineno-7-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-30" name="__codelineno-7-30" href="#__codelineno-7-30"></a><span class="p">}</span>
<a id="__codelineno-7-31" name="__codelineno-7-31" href="#__codelineno-7-31"></a>
<a id="__codelineno-7-32" name="__codelineno-7-32" href="#__codelineno-7-32"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-7-33" name="__codelineno-7-33" href="#__codelineno-7-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-34" name="__codelineno-7-34" href="#__codelineno-7-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-7-35" name="__codelineno-7-35" href="#__codelineno-7-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-36" name="__codelineno-7-36" href="#__codelineno-7-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-37" name="__codelineno-7-37" href="#__codelineno-7-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-7-38" name="__codelineno-7-38" href="#__codelineno-7-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-39" name="__codelineno-7-39" href="#__codelineno-7-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-7-40" name="__codelineno-7-40" href="#__codelineno-7-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-41" name="__codelineno-7-41" href="#__codelineno-7-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-7-42" name="__codelineno-7-42" href="#__codelineno-7-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-43" name="__codelineno-7-43" href="#__codelineno-7-43"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-7-44" name="__codelineno-7-44" href="#__codelineno-7-44"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-7-45" name="__codelineno-7-45" href="#__codelineno-7-45"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-7-46" name="__codelineno-7-46" href="#__codelineno-7-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-47" name="__codelineno-7-47" href="#__codelineno-7-47"></a>
<a id="__codelineno-7-48" name="__codelineno-7-48" href="#__codelineno-7-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-7-49" name="__codelineno-7-49" href="#__codelineno-7-49"></a>
<a id="__codelineno-7-50" name="__codelineno-7-50" href="#__codelineno-7-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-7-51" name="__codelineno-7-51" href="#__codelineno-7-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kd">func</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[</span><span class="nb">String</span><span class="p">]],</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]],</span> <span class="n">cols</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags1</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags2</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a> <span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="k">if</span> <span class="n">row</span> <span class="p">==</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="k">return</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="p">}</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="c1">// 遍历所有列</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="k">for</span> <span class="n">col</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a> <span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a> <span class="kd">let</span> <span class="nv">diag1</span> <span class="p">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a> <span class="kd">let</span> <span class="nv">diag2</span> <span class="p">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="c1">// 剪枝:不允许该格子所在列、主对角线、副对角线存在皇后</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="k">if</span> <span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a> <span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;Q&quot;</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a> <span class="c1">// 放置下一行</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a> <span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;#&quot;</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-26" name="__codelineno-8-26" href="#__codelineno-8-26"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-27" name="__codelineno-8-27" href="#__codelineno-8-27"></a> <span class="p">}</span>
<a id="__codelineno-8-28" name="__codelineno-8-28" href="#__codelineno-8-28"></a> <span class="p">}</span>
<a id="__codelineno-8-29" name="__codelineno-8-29" href="#__codelineno-8-29"></a><span class="p">}</span>
<a id="__codelineno-8-30" name="__codelineno-8-30" href="#__codelineno-8-30"></a>
<a id="__codelineno-8-31" name="__codelineno-8-31" href="#__codelineno-8-31"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-8-32" name="__codelineno-8-32" href="#__codelineno-8-32"></a><span class="kd">func</span> <span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">{</span>
<a id="__codelineno-8-33" name="__codelineno-8-33" href="#__codelineno-8-33"></a> <span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-8-34" name="__codelineno-8-34" href="#__codelineno-8-34"></a> <span class="kd">var</span> <span class="nv">state</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="s">&quot;#&quot;</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-8-35" name="__codelineno-8-35" href="#__codelineno-8-35"></a> <span class="kd">var</span> <span class="nv">cols</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span> <span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-8-36" name="__codelineno-8-36" href="#__codelineno-8-36"></a> <span class="kd">var</span> <span class="nv">diags1</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-8-37" name="__codelineno-8-37" href="#__codelineno-8-37"></a> <span class="kd">var</span> <span class="nv">diags2</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-8-38" name="__codelineno-8-38" href="#__codelineno-8-38"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-8-39" name="__codelineno-8-39" href="#__codelineno-8-39"></a>
<a id="__codelineno-8-40" name="__codelineno-8-40" href="#__codelineno-8-40"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-41" name="__codelineno-8-41" href="#__codelineno-8-41"></a>
<a id="__codelineno-8-42" name="__codelineno-8-42" href="#__codelineno-8-42"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-8-43" name="__codelineno-8-43" href="#__codelineno-8-43"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h2 id="1341">13.4.1. &nbsp; 复杂度分析<a class="headerlink" href="#1341" title="Permanent link">&para;</a></h2>
<p>逐行放置 <span class="arithmatex">\(n\)</span> 次,考虑列约束,则从第一行到最后一行分别有 <span class="arithmatex">\(n, n-1, \cdots, 2, 1\)</span> 个选择,<strong>因此时间复杂度为 <span class="arithmatex">\(O(n!)\)</span></strong> 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。</p>
<p><code>state</code> 使用 <span class="arithmatex">\(O(n^2)\)</span> 空间,<code>cols</code> , <code>diags1</code> , <code>diags2</code> 皆使用 <span class="arithmatex">\(O(n)\)</span> 空间。最大递归深度为 <span class="arithmatex">\(n\)</span> ,使用 <span class="arithmatex">\(O(n)\)</span> 栈帧空间。因此,<strong>空间复杂度为 <span class="arithmatex">\(O(n^2)\)</span></strong></p>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../subset_sum_problem/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 13.3. &amp;nbsp; 子集和问题" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
13.3. &nbsp; 子集和问题
</div>
</div>
</a>
<a href="../summary/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.5. &amp;nbsp; 小结" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
13.5. &nbsp; 小结
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.instant", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.780af0f4.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.f11ae8b1.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>