You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_divide_and_conquer/hanota_problem.md

196 lines
6.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 汉诺塔问题
在归并排序和构建二叉树中,我们将原问题分解为两个规模为原问题一半的子问题。然而,对于即将介绍的汉诺塔问题,我们采用不同的分解策略。
!!! question
给定三根柱子,记为 `A` , `B` , `C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变。在移动圆盘的过程中,需要遵守以下规则:
1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入;
2. 每次只能移动一个圆盘;
3. 小圆盘必须时刻位于大圆盘之上;
![汉诺塔问题示例](hanota_problem.assets/hanota_example.png)
在本文中,**我们将规模为 $i$ 的汉诺塔问题记做 $f(i)$** 。例如 $f(3)$ 代表将 $3$ 个圆盘从 `A` 移动至 `C` 的汉诺塔问题。
先考虑最简单的情况:对于问题 $f(1)$ ,即当只有一个圆盘时,则将它直接从 `A` 移动至 `C` 即可。
=== "<1>"
![规模为 1 问题的解](hanota_problem.assets/hanota_f1_step1.png)
=== "<2>"
![hanota_f1_step2](hanota_problem.assets/hanota_f1_step2.png)
对于问题 $f(2)$ ,即当有两个圆盘时,**由于要时刻满足小圆盘在大圆盘之上,因此需要借助 `B` 来完成移动**,包括三步:
1. 先将上面的小圆盘从 `A` 移至 `B`
2. 再将大圆盘从 `A` 移至 `C`
3. 最后将小圆盘从 `B` 移至 `C`
如下图所示,对于小圆盘的移动,**我们称 `C` 为目标柱、`B` 为缓冲柱**。
=== "<1>"
![规模为 2 问题的解](hanota_problem.assets/hanota_f2_step1.png)
=== "<2>"
![hanota_f2_step2](hanota_problem.assets/hanota_f2_step2.png)
=== "<3>"
![hanota_f2_step3](hanota_problem.assets/hanota_f2_step3.png)
=== "<4>"
![hanota_f2_step4](hanota_problem.assets/hanota_f2_step4.png)
对于问题 $f(3)$ ,即当有三个圆盘时,情况变得稍微复杂了一些。由于已知 $f(1)$ 和 $f(2)$ 的解,我们可以从分治角度思考,**将 `A` 顶部的两个圆盘看做一个整体**,并执行以下步骤:
1.`B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移动至 `B`
2.`A` 中剩余的一个圆盘从 `A` 移动至 `C`
3.`C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移动至 `C`
这样三个圆盘就被顺利地从 `A` 移动至 `C` 了。
=== "<1>"
![规模为 3 问题的解](hanota_problem.assets/hanota_f3_step1.png)
=== "<2>"
![hanota_f3_step2](hanota_problem.assets/hanota_f3_step2.png)
=== "<3>"
![hanota_f3_step3](hanota_problem.assets/hanota_f3_step3.png)
=== "<4>"
![hanota_f3_step4](hanota_problem.assets/hanota_f3_step4.png)
本质上看,我们将问题 $f(3)$ 划分为两个子问题 $f(2)$ 和子问题 $f(1)$。按顺序解决这三个子问题之后,原问题随之得到解决。**以上分析说明了子问题的独立性,以及解是可以合并的**。
至此,我们可总结出汉诺塔问题的分治策略:**将原问题 $f(n)$ 划分为两个子问题 $f(n-1)$ 和一个子问题 $f(1)$** 。子问题的解决顺序为:
1. 将 $n-1$ 个圆盘借助 `C``A` 移至 `B`
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C`
3. 将 $n-1$ 个圆盘借助 `A``B` 移至 `C`
并且,对于这两个子问题 $f(n-1)$ **可以通过相同的方式进行递归划分**,直至达到最小子问题 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移动操作即可。
![汉诺塔问题的分治策略](hanota_problem.assets/hanota_divide_and_conquer.png)
在代码实现中,我们声明一个递归函数 `dfs(i, src, buf, tar)` ,它的作用是将柱 `src` 顶部的 $i$ 个圆盘借助缓冲柱 `buf` 移动至目标柱 `tar`
=== "Java"
```java title="hanota.java"
[class]{hanota}-[func]{move}
[class]{hanota}-[func]{dfs}
[class]{hanota}-[func]{solveHanota}
```
=== "C++"
```cpp title="hanota.cpp"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Python"
```python title="hanota.py"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Go"
```go title="hanota.go"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "JavaScript"
```javascript title="hanota.js"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "TypeScript"
```typescript title="hanota.ts"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "C"
```c title="hanota.c"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "C#"
```csharp title="hanota.cs"
[class]{hanota}-[func]{move}
[class]{hanota}-[func]{dfs}
[class]{hanota}-[func]{solveHanota}
```
=== "Swift"
```swift title="hanota.swift"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Zig"
```zig title="hanota.zig"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
=== "Dart"
```dart title="hanota.dart"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{hanota}
```
如下图所示,汉诺塔问题形成一个高度为 $n$ 的递归树,每个节点代表一个子问题、对应一个开启的 `dfs()` 函数,**因此时间复杂度为 $O(2^n)$ ,空间复杂度为 $O(n)$** 。
![汉诺塔问题的递归树](hanota_problem.assets/hanota_recursive_tree.png)
有趣的是,汉诺塔问题源自一种古老的传说故事。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 $64$ 个大小不一的金圆盘。僧侣们不断地移动原盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。
然而根据以上分析,即使僧侣们每秒钟移动一次,总共需要大约 $2^{64} \approx 1.84×10^{19}$ 秒,合约 $5850$ 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。