You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
19 KiB
478 lines
19 KiB
---
|
|
comments: true
|
|
---
|
|
|
|
# 8.3 Top-k problem
|
|
|
|
!!! question
|
|
|
|
Given an unordered array `nums` of length $n$, return the largest $k$ elements in the array.
|
|
|
|
For this problem, we will first introduce two straightforward solutions, then explain a more efficient heap-based method.
|
|
|
|
## 8.3.1 Method 1: Iterative selection
|
|
|
|
We can perform $k$ rounds of iterations as shown in the Figure 8-6 , extracting the $1^{st}$, $2^{nd}$, $\dots$, $k^{th}$ largest elements in each round, with a time complexity of $O(nk)$.
|
|
|
|
This method is only suitable when $k \ll n$, as the time complexity approaches $O(n^2)$ when $k$ is close to $n$, which is very time-consuming.
|
|
|
|
![Iteratively finding the largest k elements](top_k.assets/top_k_traversal.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 8-6 Iteratively finding the largest k elements </p>
|
|
|
|
!!! tip
|
|
|
|
When $k = n$, we can obtain a complete ordered sequence, which is equivalent to the "selection sort" algorithm.
|
|
|
|
## 8.3.2 Method 2: Sorting
|
|
|
|
As shown in the Figure 8-7 , we can first sort the array `nums` and then return the last $k$ elements, with a time complexity of $O(n \log n)$.
|
|
|
|
Clearly, this method "overachieves" the task, as we only need to find the largest $k$ elements, without the need to sort the other elements.
|
|
|
|
![Sorting to find the largest k elements](top_k.assets/top_k_sorting.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 8-7 Sorting to find the largest k elements </p>
|
|
|
|
## 8.3.3 Method 3: Heap
|
|
|
|
We can solve the Top-k problem more efficiently based on heaps, as shown in the following process.
|
|
|
|
1. Initialize a min heap, where the top element is the smallest.
|
|
2. First, insert the first $k$ elements of the array into the heap.
|
|
3. Starting from the $k + 1^{th}$ element, if the current element is greater than the top element of the heap, remove the top element of the heap and insert the current element into the heap.
|
|
4. After completing the traversal, the heap contains the largest $k$ elements.
|
|
|
|
=== "<1>"
|
|
![Find the largest k elements based on heap](top_k.assets/top_k_heap_step1.png){ class="animation-figure" }
|
|
|
|
=== "<2>"
|
|
![top_k_heap_step2](top_k.assets/top_k_heap_step2.png){ class="animation-figure" }
|
|
|
|
=== "<3>"
|
|
![top_k_heap_step3](top_k.assets/top_k_heap_step3.png){ class="animation-figure" }
|
|
|
|
=== "<4>"
|
|
![top_k_heap_step4](top_k.assets/top_k_heap_step4.png){ class="animation-figure" }
|
|
|
|
=== "<5>"
|
|
![top_k_heap_step5](top_k.assets/top_k_heap_step5.png){ class="animation-figure" }
|
|
|
|
=== "<6>"
|
|
![top_k_heap_step6](top_k.assets/top_k_heap_step6.png){ class="animation-figure" }
|
|
|
|
=== "<7>"
|
|
![top_k_heap_step7](top_k.assets/top_k_heap_step7.png){ class="animation-figure" }
|
|
|
|
=== "<8>"
|
|
![top_k_heap_step8](top_k.assets/top_k_heap_step8.png){ class="animation-figure" }
|
|
|
|
=== "<9>"
|
|
![top_k_heap_step9](top_k.assets/top_k_heap_step9.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 8-8 Find the largest k elements based on heap </p>
|
|
|
|
Example code is as follows:
|
|
|
|
=== "Python"
|
|
|
|
```python title="top_k.py"
|
|
def top_k_heap(nums: list[int], k: int) -> list[int]:
|
|
"""基于堆查找数组中最大的 k 个元素"""
|
|
# 初始化小顶堆
|
|
heap = []
|
|
# 将数组的前 k 个元素入堆
|
|
for i in range(k):
|
|
heapq.heappush(heap, nums[i])
|
|
# 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i in range(k, len(nums)):
|
|
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > heap[0]:
|
|
heapq.heappop(heap)
|
|
heapq.heappush(heap, nums[i])
|
|
return heap
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="top_k.cpp"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
|
|
// 初始化小顶堆
|
|
priority_queue<int, vector<int>, greater<int>> heap;
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.push(nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.size(); i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.top()) {
|
|
heap.pop();
|
|
heap.push(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="top_k.java"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
Queue<Integer> topKHeap(int[] nums, int k) {
|
|
// 初始化小顶堆
|
|
Queue<Integer> heap = new PriorityQueue<Integer>();
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.offer(nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.poll();
|
|
heap.offer(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="top_k.cs"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
|
|
// 初始化小顶堆
|
|
PriorityQueue<int, int> heap = new();
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.Enqueue(nums[i], nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.Length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.Peek()) {
|
|
heap.Dequeue();
|
|
heap.Enqueue(nums[i], nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="top_k.go"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
func topKHeap(nums []int, k int) *minHeap {
|
|
// 初始化小顶堆
|
|
h := &minHeap{}
|
|
heap.Init(h)
|
|
// 将数组的前 k 个元素入堆
|
|
for i := 0; i < k; i++ {
|
|
heap.Push(h, nums[i])
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i := k; i < len(nums); i++ {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > h.Top().(int) {
|
|
heap.Pop(h)
|
|
heap.Push(h, nums[i])
|
|
}
|
|
}
|
|
return h
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="top_k.swift"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
func topKHeap(nums: [Int], k: Int) -> [Int] {
|
|
// 初始化一个小顶堆,并将前 k 个元素建堆
|
|
var heap = Heap(nums.prefix(k))
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i in nums.indices.dropFirst(k) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > heap.min()! {
|
|
_ = heap.removeMin()
|
|
heap.insert(nums[i])
|
|
}
|
|
}
|
|
return heap.unordered
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="top_k.js"
|
|
/* 元素入堆 */
|
|
function pushMinHeap(maxHeap, val) {
|
|
// 元素取反
|
|
maxHeap.push(-val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
function popMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return -maxHeap.pop();
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
function peekMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return -maxHeap.peek();
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
function getMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return maxHeap.getMaxHeap().map((num) => -num);
|
|
}
|
|
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
function topKHeap(nums, k) {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
const maxHeap = new MaxHeap([]);
|
|
// 将数组的前 k 个元素入堆
|
|
for (let i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (let i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
// 返回堆中元素
|
|
return getMinHeap(maxHeap);
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="top_k.ts"
|
|
/* 元素入堆 */
|
|
function pushMinHeap(maxHeap: MaxHeap, val: number): void {
|
|
// 元素取反
|
|
maxHeap.push(-val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
function popMinHeap(maxHeap: MaxHeap): number {
|
|
// 元素取反
|
|
return -maxHeap.pop();
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
function peekMinHeap(maxHeap: MaxHeap): number {
|
|
// 元素取反
|
|
return -maxHeap.peek();
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
function getMinHeap(maxHeap: MaxHeap): number[] {
|
|
// 元素取反
|
|
return maxHeap.getMaxHeap().map((num: number) => -num);
|
|
}
|
|
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
function topKHeap(nums: number[], k: number): number[] {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
const maxHeap = new MaxHeap([]);
|
|
// 将数组的前 k 个元素入堆
|
|
for (let i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (let i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
// 返回堆中元素
|
|
return getMinHeap(maxHeap);
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="top_k.dart"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
MinHeap topKHeap(List<int> nums, int k) {
|
|
// 初始化小顶堆,将数组的前 k 个元素入堆
|
|
MinHeap heap = MinHeap(nums.sublist(0, k));
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.pop();
|
|
heap.push(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="top_k.rs"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
|
|
// BinaryHeap 是大顶堆,使用 Reverse 将元素取反,从而实现小顶堆
|
|
let mut heap = BinaryHeap::<Reverse<i32>>::new();
|
|
// 将数组的前 k 个元素入堆
|
|
for &num in nums.iter().take(k) {
|
|
heap.push(Reverse(num));
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for &num in nums.iter().skip(k) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if num > heap.peek().unwrap().0 {
|
|
heap.pop();
|
|
heap.push(Reverse(num));
|
|
}
|
|
}
|
|
heap
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="top_k.c"
|
|
/* 元素入堆 */
|
|
void pushMinHeap(MaxHeap *maxHeap, int val) {
|
|
// 元素取反
|
|
push(maxHeap, -val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
int popMinHeap(MaxHeap *maxHeap) {
|
|
// 元素取反
|
|
return -pop(maxHeap);
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
int peekMinHeap(MaxHeap *maxHeap) {
|
|
// 元素取反
|
|
return -peek(maxHeap);
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
int *getMinHeap(MaxHeap *maxHeap) {
|
|
// 将堆中所有元素取反并存入 res 数组
|
|
int *res = (int *)malloc(maxHeap->size * sizeof(int));
|
|
for (int i = 0; i < maxHeap->size; i++) {
|
|
res[i] = -maxHeap->data[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
int *getMinHeap(MaxHeap *maxHeap) {
|
|
// 将堆中所有元素取反并存入 res 数组
|
|
int *res = (int *)malloc(maxHeap->size * sizeof(int));
|
|
for (int i = 0; i < maxHeap->size; i++) {
|
|
res[i] = -maxHeap->data[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// 基于堆查找数组中最大的 k 个元素的函数
|
|
int *topKHeap(int *nums, int sizeNums, int k) {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
int *empty = (int *)malloc(0);
|
|
MaxHeap *maxHeap = newMaxHeap(empty, 0);
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < sizeNums; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
int *res = getMinHeap(maxHeap);
|
|
// 释放内存
|
|
delMaxHeap(maxHeap);
|
|
return res;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="top_k.kt"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
fun topKHeap(nums: IntArray, k: Int): Queue<Int> {
|
|
// 初始化小顶堆
|
|
val heap = PriorityQueue<Int>()
|
|
// 将数组的前 k 个元素入堆
|
|
for (i in 0..<k) {
|
|
heap.offer(nums[i])
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (i in k..<nums.size) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.poll()
|
|
heap.offer(nums[i])
|
|
}
|
|
}
|
|
return heap
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="top_k.rb"
|
|
### 基于堆查找数组中最大的 k 个元素 ###
|
|
def top_k_heap(nums, k)
|
|
# 初始化小顶堆
|
|
# 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
max_heap = MaxHeap.new([])
|
|
|
|
# 将数组的前 k 个元素入堆
|
|
for i in 0...k
|
|
push_min_heap(max_heap, nums[i])
|
|
end
|
|
|
|
# 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i in k...nums.length
|
|
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > peek_min_heap(max_heap)
|
|
pop_min_heap(max_heap)
|
|
push_min_heap(max_heap, nums[i])
|
|
end
|
|
end
|
|
|
|
get_min_heap(max_heap)
|
|
end
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="top_k.zig"
|
|
[class]{}-[func]{topKHeap}
|
|
```
|
|
|
|
??? pythontutor "Code Visualization"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D,%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E4%BA%8E%E5%A0%86%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%86%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%8D%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E4%BB%8E%E7%AC%AC%20k%2B1%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%BC%80%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%9A%84%E9%95%BF%E5%BA%A6%E4%B8%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k,%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E4%BA%8E%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E5%B0%86%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E3%80%81%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%207,%206,%203,%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums,%20k%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D,%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E4%BA%8E%E5%A0%86%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%86%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%8D%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E4%BB%8E%E7%AC%AC%20k%2B1%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%BC%80%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%9A%84%E9%95%BF%E5%BA%A6%E4%B8%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k,%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E4%BA%8E%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E5%B0%86%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E3%80%81%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%207,%206,%203,%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums,%20k%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
|
|
|
A total of $n$ rounds of heap insertions and deletions are performed, with the maximum heap size being $k$, hence the time complexity is $O(n \log k)$. This method is very efficient; when $k$ is small, the time complexity tends towards $O(n)$; when $k$ is large, the time complexity will not exceed $O(n \log n)$.
|
|
|
|
Additionally, this method is suitable for scenarios with dynamic data streams. By continuously adding data, we can maintain the elements within the heap, thereby achieving dynamic updates of the largest $k$ elements.
|