You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-Hant/docs/chapter_tree/binary_search_tree.md

78 KiB

comments
true

7.4   二元搜尋樹

如圖 7-16 所示,二元搜尋樹binary search tree滿足以下條件。

  1. 對於根節點,左子樹中所有節點的值 < 根節點的值 < 右子樹中所有節點的值。
  2. 任意節點的左、右子樹也是二元搜尋樹,即同樣滿足條件 1.

二元搜尋樹{ class="animation-figure" }

圖 7-16   二元搜尋樹

7.4.1   二元搜尋樹的操作

我們將二元搜尋樹封裝為一個類別 BinarySearchTree ,並宣告一個成員變數 root ,指向樹的根節點。

1.   查詢節點

給定目標節點值 num ,可以根據二元搜尋樹的性質來查詢。如圖 7-17 所示,我們宣告一個節點 cur ,從二元樹的根節點 root 出發,迴圈比較節點值 cur.valnum 之間的大小關係。

  • cur.val < num ,說明目標節點在 cur 的右子樹中,因此執行 cur = cur.right
  • cur.val > num ,說明目標節點在 cur 的左子樹中,因此執行 cur = cur.left
  • cur.val = num ,說明找到目標節點,跳出迴圈並返回該節點。

=== "<1>" 二元搜尋樹查詢節點示例{ class="animation-figure" }

=== "<2>" bst_search_step2{ class="animation-figure" }

=== "<3>" bst_search_step3{ class="animation-figure" }

=== "<4>" bst_search_step4{ class="animation-figure" }

圖 7-17   二元搜尋樹查詢節點示例

二元搜尋樹的查詢操作與二分搜尋演算法的工作原理一致,都是每輪排除一半情況。迴圈次數最多為二元樹的高度,當二元樹平衡時,使用 O(\log n) 時間。示例程式碼如下:

=== "Python"

```python title="binary_search_tree.py"
def search(self, num: int) -> TreeNode | None:
    """查詢節點"""
    cur = self._root
    # 迴圈查詢,越過葉節點後跳出
    while cur is not None:
        # 目標節點在 cur 的右子樹中
        if cur.val < num:
            cur = cur.right
        # 目標節點在 cur 的左子樹中
        elif cur.val > num:
            cur = cur.left
        # 找到目標節點,跳出迴圈
        else:
            break
    return cur
```

=== "C++"

```cpp title="binary_search_tree.cpp"
/* 查詢節點 */
TreeNode *search(int num) {
    TreeNode *cur = root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != nullptr) {
        // 目標節點在 cur 的右子樹中
        if (cur->val < num)
            cur = cur->right;
        // 目標節點在 cur 的左子樹中
        else if (cur->val > num)
            cur = cur->left;
        // 找到目標節點,跳出迴圈
        else
            break;
    }
    // 返回目標節點
    return cur;
}
```

=== "Java"

```java title="binary_search_tree.java"
/* 查詢節點 */
TreeNode search(int num) {
    TreeNode cur = root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 目標節點在 cur 的右子樹中
        if (cur.val < num)
            cur = cur.right;
        // 目標節點在 cur 的左子樹中
        else if (cur.val > num)
            cur = cur.left;
        // 找到目標節點,跳出迴圈
        else
            break;
    }
    // 返回目標節點
    return cur;
}
```

=== "C#"

```csharp title="binary_search_tree.cs"
/* 查詢節點 */
TreeNode? Search(int num) {
    TreeNode? cur = root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 目標節點在 cur 的右子樹中
        if (cur.val < num) cur =
            cur.right;
        // 目標節點在 cur 的左子樹中
        else if (cur.val > num)
            cur = cur.left;
        // 找到目標節點,跳出迴圈
        else
            break;
    }
    // 返回目標節點
    return cur;
}
```

=== "Go"

```go title="binary_search_tree.go"
/* 查詢節點 */
func (bst *binarySearchTree) search(num int) *TreeNode {
    node := bst.root
    // 迴圈查詢,越過葉節點後跳出
    for node != nil {
        if node.Val.(int) < num {
            // 目標節點在 cur 的右子樹中
            node = node.Right
        } else if node.Val.(int) > num {
            // 目標節點在 cur 的左子樹中
            node = node.Left
        } else {
            // 找到目標節點,跳出迴圈
            break
        }
    }
    // 返回目標節點
    return node
}
```

=== "Swift"

```swift title="binary_search_tree.swift"
/* 查詢節點 */
func search(num: Int) -> TreeNode? {
    var cur = root
    // 迴圈查詢,越過葉節點後跳出
    while cur != nil {
        // 目標節點在 cur 的右子樹中
        if cur!.val < num {
            cur = cur?.right
        }
        // 目標節點在 cur 的左子樹中
        else if cur!.val > num {
            cur = cur?.left
        }
        // 找到目標節點,跳出迴圈
        else {
            break
        }
    }
    // 返回目標節點
    return cur
}
```

=== "JS"

```javascript title="binary_search_tree.js"
/* 查詢節點 */
search(num) {
    let cur = this.root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 目標節點在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 目標節點在 cur 的左子樹中
        else if (cur.val > num) cur = cur.left;
        // 找到目標節點,跳出迴圈
        else break;
    }
    // 返回目標節點
    return cur;
}
```

=== "TS"

```typescript title="binary_search_tree.ts"
/* 查詢節點 */
search(num: number): TreeNode | null {
    let cur = this.root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 目標節點在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 目標節點在 cur 的左子樹中
        else if (cur.val > num) cur = cur.left;
        // 找到目標節點,跳出迴圈
        else break;
    }
    // 返回目標節點
    return cur;
}
```

=== "Dart"

```dart title="binary_search_tree.dart"
/* 查詢節點 */
TreeNode? search(int _num) {
  TreeNode? cur = _root;
  // 迴圈查詢,越過葉節點後跳出
  while (cur != null) {
    // 目標節點在 cur 的右子樹中
    if (cur.val < _num)
      cur = cur.right;
    // 目標節點在 cur 的左子樹中
    else if (cur.val > _num)
      cur = cur.left;
    // 找到目標節點,跳出迴圈
    else
      break;
  }
  // 返回目標節點
  return cur;
}
```

=== "Rust"

```rust title="binary_search_tree.rs"
/* 查詢節點 */
pub fn search(&self, num: i32) -> OptionTreeNodeRc {
    let mut cur = self.root.clone();
    // 迴圈查詢,越過葉節點後跳出
    while let Some(node) = cur.clone() {
        match num.cmp(&node.borrow().val) {
            // 目標節點在 cur 的右子樹中
            Ordering::Greater => cur = node.borrow().right.clone(),
            // 目標節點在 cur 的左子樹中
            Ordering::Less => cur = node.borrow().left.clone(),
            // 找到目標節點,跳出迴圈
            Ordering::Equal => break,
        }
    }

    // 返回目標節點
    cur
}
```

=== "C"

```c title="binary_search_tree.c"
/* 查詢節點 */
TreeNode *search(BinarySearchTree *bst, int num) {
    TreeNode *cur = bst->root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != NULL) {
        if (cur->val < num) {
            // 目標節點在 cur 的右子樹中
            cur = cur->right;
        } else if (cur->val > num) {
            // 目標節點在 cur 的左子樹中
            cur = cur->left;
        } else {
            // 找到目標節點,跳出迴圈
            break;
        }
    }
    // 返回目標節點
    return cur;
}
```

=== "Kotlin"

```kotlin title="binary_search_tree.kt"
/* 查詢節點 */
fun search(num: Int): TreeNode? {
    var cur = root
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 目標節點在 cur 的右子樹中
        cur = if (cur._val < num)
            cur.right
        // 目標節點在 cur 的左子樹中
        else if (cur._val > num)
            cur.left
        // 找到目標節點,跳出迴圈
        else
            break
    }
    // 返回目標節點
    return cur
}
```

=== "Ruby"

```ruby title="binary_search_tree.rb"
[class]{BinarySearchTree}-[func]{search}
```

=== "Zig"

```zig title="binary_search_tree.zig"
// 查詢節點
fn search(self: *Self, num: T) ?*inc.TreeNode(T) {
    var cur = self.root;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 目標節點在 cur 的右子樹中
        if (cur.?.val < num) {
            cur = cur.?.right;
        // 目標節點在 cur 的左子樹中
        } else if (cur.?.val > num) {
            cur = cur.?.left;
        // 找到目標節點,跳出迴圈
        } else {
            break;
        }
    }
    // 返回目標節點
    return cur;
}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20search%28self%2C%20num%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20cur%20%3D%20self._root%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20elif%20cur.val%20%3E%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%EF%BC%8C%E8%B7%B3%E5%87%BA%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20return%20cur%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20node%20%3D%20bst.search%287%29%0A%20%20%20%20print%28%22%5Cn%E6%9F%A5%E8%A9%A2%E5%88%B0%E7%9A%84%E7%AF%80%E9%BB%9E%E7%89%A9%E4%BB%B6%E7%82%BA%3A%20%7B%7D%EF%BC%8C%E7%AF%80%E9%BB%9E%E5%80%BC%20%3D%20%7B%7D%22.format%28node%2C%20node.val%29%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20search%28self%2C%20num%3A%20int%29%20-%3E%20TreeNode%20%7C%20None%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20cur%20%3D%20self._root%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20elif%20cur.val%20%3E%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A8%99%E7%AF%80%E9%BB%9E%EF%BC%8C%E8%B7%B3%E5%87%BA%E8%BF%B4%E5%9C%88%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20return%20cur%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20node%20%3D%20bst.search%287%29%0A%20%20%20%20print%28%22%5Cn%E6%9F%A5%E8%A9%A2%E5%88%B0%E7%9A%84%E7%AF%80%E9%BB%9E%E7%89%A9%E4%BB%B6%E7%82%BA%3A%20%7B%7D%EF%BC%8C%E7%AF%80%E9%BB%9E%E5%80%BC%20%3D%20%7B%7D%22.format%28node%2C%20node.val%29%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

2.   插入節點

給定一個待插入元素 num ,為了保持二元搜尋樹“左子樹 < 根節點 < 右子樹”的性質,插入操作流程如圖 7-18 所示。

  1. 查詢插入位置:與查詢操作相似,從根節點出發,根據當前節點值和 num 的大小關係迴圈向下搜尋,直到越過葉節點(走訪至 None )時跳出迴圈。
  2. 在該位置插入節點:初始化節點 num ,將該節點置於 None 的位置。

在二元搜尋樹中插入節點{ class="animation-figure" }

圖 7-18   在二元搜尋樹中插入節點

在程式碼實現中,需要注意以下兩點。

  • 二元搜尋樹不允許存在重複節點,否則將違反其定義。因此,若待插入節點在樹中已存在,則不執行插入,直接返回。
  • 為了實現插入節點,我們需要藉助節點 pre 儲存上一輪迴圈的節點。這樣在走訪至 None 時,我們可以獲取到其父節點,從而完成節點插入操作。

=== "Python"

```python title="binary_search_tree.py"
def insert(self, num: int):
    """插入節點"""
    # 若樹為空,則初始化根節點
    if self._root is None:
        self._root = TreeNode(num)
        return
    # 迴圈查詢,越過葉節點後跳出
    cur, pre = self._root, None
    while cur is not None:
        # 找到重複節點,直接返回
        if cur.val == num:
            return
        pre = cur
        # 插入位置在 cur 的右子樹中
        if cur.val < num:
            cur = cur.right
        # 插入位置在 cur 的左子樹中
        else:
            cur = cur.left
    # 插入節點
    node = TreeNode(num)
    if pre.val < num:
        pre.right = node
    else:
        pre.left = node
```

=== "C++"

```cpp title="binary_search_tree.cpp"
/* 插入節點 */
void insert(int num) {
    // 若樹為空,則初始化根節點
    if (root == nullptr) {
        root = new TreeNode(num);
        return;
    }
    TreeNode *cur = root, *pre = nullptr;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != nullptr) {
        // 找到重複節點,直接返回
        if (cur->val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur->val < num)
            cur = cur->right;
        // 插入位置在 cur 的左子樹中
        else
            cur = cur->left;
    }
    // 插入節點
    TreeNode *node = new TreeNode(num);
    if (pre->val < num)
        pre->right = node;
    else
        pre->left = node;
}
```

=== "Java"

```java title="binary_search_tree.java"
/* 插入節點 */
void insert(int num) {
    // 若樹為空,則初始化根節點
    if (root == null) {
        root = new TreeNode(num);
        return;
    }
    TreeNode cur = root, pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到重複節點,直接返回
        if (cur.val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur.val < num)
            cur = cur.right;
        // 插入位置在 cur 的左子樹中
        else
            cur = cur.left;
    }
    // 插入節點
    TreeNode node = new TreeNode(num);
    if (pre.val < num)
        pre.right = node;
    else
        pre.left = node;
}
```

=== "C#"

```csharp title="binary_search_tree.cs"
/* 插入節點 */
void Insert(int num) {
    // 若樹為空,則初始化根節點
    if (root == null) {
        root = new TreeNode(num);
        return;
    }
    TreeNode? cur = root, pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到重複節點,直接返回
        if (cur.val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur.val < num)
            cur = cur.right;
        // 插入位置在 cur 的左子樹中
        else
            cur = cur.left;
    }

    // 插入節點
    TreeNode node = new(num);
    if (pre != null) {
        if (pre.val < num)
            pre.right = node;
        else
            pre.left = node;
    }
}
```

=== "Go"

```go title="binary_search_tree.go"
/* 插入節點 */
func (bst *binarySearchTree) insert(num int) {
    cur := bst.root
    // 若樹為空,則初始化根節點
    if cur == nil {
        bst.root = NewTreeNode(num)
        return
    }
    // 待插入節點之前的節點位置
    var pre *TreeNode = nil
    // 迴圈查詢,越過葉節點後跳出
    for cur != nil {
        if cur.Val == num {
            return
        }
        pre = cur
        if cur.Val.(int) < num {
            cur = cur.Right
        } else {
            cur = cur.Left
        }
    }
    // 插入節點
    node := NewTreeNode(num)
    if pre.Val.(int) < num {
        pre.Right = node
    } else {
        pre.Left = node
    }
}
```

=== "Swift"

```swift title="binary_search_tree.swift"
/* 插入節點 */
func insert(num: Int) {
    // 若樹為空,則初始化根節點
    if root == nil {
        root = TreeNode(x: num)
        return
    }
    var cur = root
    var pre: TreeNode?
    // 迴圈查詢,越過葉節點後跳出
    while cur != nil {
        // 找到重複節點,直接返回
        if cur!.val == num {
            return
        }
        pre = cur
        // 插入位置在 cur 的右子樹中
        if cur!.val < num {
            cur = cur?.right
        }
        // 插入位置在 cur 的左子樹中
        else {
            cur = cur?.left
        }
    }
    // 插入節點
    let node = TreeNode(x: num)
    if pre!.val < num {
        pre?.right = node
    } else {
        pre?.left = node
    }
}
```

=== "JS"

```javascript title="binary_search_tree.js"
/* 插入節點 */
insert(num) {
    // 若樹為空,則初始化根節點
    if (this.root === null) {
        this.root = new TreeNode(num);
        return;
    }
    let cur = this.root,
        pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 找到重複節點,直接返回
        if (cur.val === num) return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 插入位置在 cur 的左子樹中
        else cur = cur.left;
    }
    // 插入節點
    const node = new TreeNode(num);
    if (pre.val < num) pre.right = node;
    else pre.left = node;
}
```

=== "TS"

```typescript title="binary_search_tree.ts"
/* 插入節點 */
insert(num: number): void {
    // 若樹為空,則初始化根節點
    if (this.root === null) {
        this.root = new TreeNode(num);
        return;
    }
    let cur: TreeNode | null = this.root,
        pre: TreeNode | null = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 找到重複節點,直接返回
        if (cur.val === num) return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 插入位置在 cur 的左子樹中
        else cur = cur.left;
    }
    // 插入節點
    const node = new TreeNode(num);
    if (pre!.val < num) pre!.right = node;
    else pre!.left = node;
}
```

=== "Dart"

```dart title="binary_search_tree.dart"
/* 插入節點 */
void insert(int _num) {
  // 若樹為空,則初始化根節點
  if (_root == null) {
    _root = TreeNode(_num);
    return;
  }
  TreeNode? cur = _root;
  TreeNode? pre = null;
  // 迴圈查詢,越過葉節點後跳出
  while (cur != null) {
    // 找到重複節點,直接返回
    if (cur.val == _num) return;
    pre = cur;
    // 插入位置在 cur 的右子樹中
    if (cur.val < _num)
      cur = cur.right;
    // 插入位置在 cur 的左子樹中
    else
      cur = cur.left;
  }
  // 插入節點
  TreeNode? node = TreeNode(_num);
  if (pre!.val < _num)
    pre.right = node;
  else
    pre.left = node;
}
```

=== "Rust"

```rust title="binary_search_tree.rs"
/* 插入節點 */
pub fn insert(&mut self, num: i32) {
    // 若樹為空,則初始化根節點
    if self.root.is_none() {
        self.root = Some(TreeNode::new(num));
        return;
    }
    let mut cur = self.root.clone();
    let mut pre = None;
    // 迴圈查詢,越過葉節點後跳出
    while let Some(node) = cur.clone() {
        match num.cmp(&node.borrow().val) {
            // 找到重複節點,直接返回
            Ordering::Equal => return,
            // 插入位置在 cur 的右子樹中
            Ordering::Greater => {
                pre = cur.clone();
                cur = node.borrow().right.clone();
            }
            // 插入位置在 cur 的左子樹中
            Ordering::Less => {
                pre = cur.clone();
                cur = node.borrow().left.clone();
            }
        }
    }
    // 插入節點
    let pre = pre.unwrap();
    let node = Some(TreeNode::new(num));
    if num > pre.borrow().val {
        pre.borrow_mut().right = node;
    } else {
        pre.borrow_mut().left = node;
    }
}
```

=== "C"

```c title="binary_search_tree.c"
/* 插入節點 */
void insert(BinarySearchTree *bst, int num) {
    // 若樹為空,則初始化根節點
    if (bst->root == NULL) {
        bst->root = newTreeNode(num);
        return;
    }
    TreeNode *cur = bst->root, *pre = NULL;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != NULL) {
        // 找到重複節點,直接返回
        if (cur->val == num) {
            return;
        }
        pre = cur;
        if (cur->val < num) {
            // 插入位置在 cur 的右子樹中
            cur = cur->right;
        } else {
            // 插入位置在 cur 的左子樹中
            cur = cur->left;
        }
    }
    // 插入節點
    TreeNode *node = newTreeNode(num);
    if (pre->val < num) {
        pre->right = node;
    } else {
        pre->left = node;
    }
}
```

=== "Kotlin"

```kotlin title="binary_search_tree.kt"
/* 插入節點 */
fun insert(num: Int) {
    // 若樹為空,則初始化根節點
    if (root == null) {
        root = TreeNode(num)
        return
    }
    var cur = root
    var pre: TreeNode? = null
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到重複節點,直接返回
        if (cur._val == num)
            return
        pre = cur
        // 插入位置在 cur 的右子樹中
        cur = if (cur._val < num)
            cur.right
        // 插入位置在 cur 的左子樹中
        else
            cur.left
    }
    // 插入節點
    val node = TreeNode(num)
    if (pre?._val!! < num)
        pre.right = node
    else
        pre.left = node
}
```

=== "Ruby"

```ruby title="binary_search_tree.rb"
[class]{BinarySearchTree}-[func]{insert}
```

=== "Zig"

```zig title="binary_search_tree.zig"
// 插入節點
fn insert(self: *Self, num: T) !void {
    // 若樹為空,則初始化根節點
    if (self.root == null) {
        self.root = try self.mem_allocator.create(inc.TreeNode(T));
        return;
    }
    var cur = self.root;
    var pre: ?*inc.TreeNode(T) = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到重複節點,直接返回
        if (cur.?.val == num) return;
        pre = cur;
        // 插入位置在 cur 的右子樹中
        if (cur.?.val < num) {
            cur = cur.?.right;
        // 插入位置在 cur 的左子樹中
        } else {
            cur = cur.?.left;
        }
    }
    // 插入節點
    var node = try self.mem_allocator.create(inc.TreeNode(T));
    node.init(num);
    if (pre.?.val < num) {
        pre.?.right = node;
    } else {
        pre.?.left = node;
    }
}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.insert%2816%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E7%A9%BA%E6%A8%B9%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E6%A8%B9%E7%82%BA%E7%A9%BA%EF%BC%8C%E5%89%87%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%B9%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E6%9F%A5%E8%A9%A2%EF%BC%8C%E8%B6%8A%E9%81%8E%E8%91%89%E7%AF%80%E9%BB%9E%E5%BE%8C%E8%B7%B3%E5%87%BA%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E9%87%8D%E8%A4%87%E7%AF%80%E9%BB%9E%EF%BC%8C%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%8F%B3%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%BD%8D%E7%BD%AE%E5%9C%A8%20cur%20%E7%9A%84%E5%B7%A6%E5%AD%90%E6%A8%B9%E4%B8%AD%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.insert%2816%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

與查詢節點相同,插入節點使用 O(\log n) 時間。

3.   刪除節點

先在二元樹中查詢到目標節點,再將其刪除。與插入節點類似,我們需要保證在刪除操作完成後,二元搜尋樹的“左子樹 < 根節點 < 右子樹”的性質仍然滿足。因此,我們根據目標節點的子節點數量,分 0、1 和 2 三種情況,執行對應的刪除節點操作。

如圖 7-19 所示,當待刪除節點的度為 0 時,表示該節點是葉節點,可以直接刪除。

在二元搜尋樹中刪除節點(度為 0 ){ class="animation-figure" }

圖 7-19   在二元搜尋樹中刪除節點(度為 0

如圖 7-20 所示,當待刪除節點的度為 1 時,將待刪除節點替換為其子節點即可。

在二元搜尋樹中刪除節點(度為 1 ){ class="animation-figure" }

圖 7-20   在二元搜尋樹中刪除節點(度為 1

當待刪除節點的度為 2 時,我們無法直接刪除它,而需要使用一個節點替換該節點。由於要保持二元搜尋樹“左子樹 < 根節點 < 右子樹”的性質,因此這個節點可以是右子樹的最小節點或左子樹的最大節點

假設我們選擇右子樹的最小節點(中序走訪的下一個節點),則刪除操作流程如圖 7-21 所示。

  1. 找到待刪除節點在“中序走訪序列”中的下一個節點,記為 tmp
  2. tmp 的值覆蓋待刪除節點的值,並在樹中遞迴刪除節點 tmp

=== "<1>" 在二元搜尋樹中刪除節點(度為 2 ){ class="animation-figure" }

=== "<2>" bst_remove_case3_step2{ class="animation-figure" }

=== "<3>" bst_remove_case3_step3{ class="animation-figure" }

=== "<4>" bst_remove_case3_step4{ class="animation-figure" }

圖 7-21   在二元搜尋樹中刪除節點(度為 2

刪除節點操作同樣使用 O(\log n) 時間,其中查詢待刪除節點需要 O(\log n) 時間,獲取中序走訪後繼節點需要 O(\log n) 時間。示例程式碼如下:

=== "Python"

```python title="binary_search_tree.py"
def remove(self, num: int):
    """刪除節點"""
    # 若樹為空,直接提前返回
    if self._root is None:
        return
    # 迴圈查詢,越過葉節點後跳出
    cur, pre = self._root, None
    while cur is not None:
        # 找到待刪除節點,跳出迴圈
        if cur.val == num:
            break
        pre = cur
        # 待刪除節點在 cur 的右子樹中
        if cur.val < num:
            cur = cur.right
        # 待刪除節點在 cur 的左子樹中
        else:
            cur = cur.left
    # 若無待刪除節點,則直接返回
    if cur is None:
        return

    # 子節點數量 = 0 or 1
    if cur.left is None or cur.right is None:
        # 當子節點數量 = 0 / 1 時, child = null / 該子節點
        child = cur.left or cur.right
        # 刪除節點 cur
        if cur != self._root:
            if pre.left == cur:
                pre.left = child
            else:
                pre.right = child
        else:
            # 若刪除節點為根節點,則重新指定根節點
            self._root = child
    # 子節點數量 = 2
    else:
        # 獲取中序走訪中 cur 的下一個節點
        tmp: TreeNode = cur.right
        while tmp.left is not None:
            tmp = tmp.left
        # 遞迴刪除節點 tmp
        self.remove(tmp.val)
        # 用 tmp 覆蓋 cur
        cur.val = tmp.val
```

=== "C++"

```cpp title="binary_search_tree.cpp"
/* 刪除節點 */
void remove(int num) {
    // 若樹為空,直接提前返回
    if (root == nullptr)
        return;
    TreeNode *cur = root, *pre = nullptr;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != nullptr) {
        // 找到待刪除節點,跳出迴圈
        if (cur->val == num)
            break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur->val < num)
            cur = cur->right;
        // 待刪除節點在 cur 的左子樹中
        else
            cur = cur->left;
    }
    // 若無待刪除節點,則直接返回
    if (cur == nullptr)
        return;
    // 子節點數量 = 0 or 1
    if (cur->left == nullptr || cur->right == nullptr) {
        // 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點
        TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
        // 刪除節點 cur
        if (cur != root) {
            if (pre->left == cur)
                pre->left = child;
            else
                pre->right = child;
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            root = child;
        }
        // 釋放記憶體
        delete cur;
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        TreeNode *tmp = cur->right;
        while (tmp->left != nullptr) {
            tmp = tmp->left;
        }
        int tmpVal = tmp->val;
        // 遞迴刪除節點 tmp
        remove(tmp->val);
        // 用 tmp 覆蓋 cur
        cur->val = tmpVal;
    }
}
```

=== "Java"

```java title="binary_search_tree.java"
/* 刪除節點 */
void remove(int num) {
    // 若樹為空,直接提前返回
    if (root == null)
        return;
    TreeNode cur = root, pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到待刪除節點,跳出迴圈
        if (cur.val == num)
            break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur.val < num)
            cur = cur.right;
        // 待刪除節點在 cur 的左子樹中
        else
            cur = cur.left;
    }
    // 若無待刪除節點,則直接返回
    if (cur == null)
        return;
    // 子節點數量 = 0 or 1
    if (cur.left == null || cur.right == null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        TreeNode child = cur.left != null ? cur.left : cur.right;
        // 刪除節點 cur
        if (cur != root) {
            if (pre.left == cur)
                pre.left = child;
            else
                pre.right = child;
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            root = child;
        }
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        TreeNode tmp = cur.right;
        while (tmp.left != null) {
            tmp = tmp.left;
        }
        // 遞迴刪除節點 tmp
        remove(tmp.val);
        // 用 tmp 覆蓋 cur
        cur.val = tmp.val;
    }
}
```

=== "C#"

```csharp title="binary_search_tree.cs"
/* 刪除節點 */
void Remove(int num) {
    // 若樹為空,直接提前返回
    if (root == null)
        return;
    TreeNode? cur = root, pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到待刪除節點,跳出迴圈
        if (cur.val == num)
            break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur.val < num)
            cur = cur.right;
        // 待刪除節點在 cur 的左子樹中
        else
            cur = cur.left;
    }
    // 若無待刪除節點,則直接返回
    if (cur == null)
        return;
    // 子節點數量 = 0 or 1
    if (cur.left == null || cur.right == null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        TreeNode? child = cur.left ?? cur.right;
        // 刪除節點 cur
        if (cur != root) {
            if (pre!.left == cur)
                pre.left = child;
            else
                pre.right = child;
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            root = child;
        }
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        TreeNode? tmp = cur.right;
        while (tmp.left != null) {
            tmp = tmp.left;
        }
        // 遞迴刪除節點 tmp
        Remove(tmp.val!.Value);
        // 用 tmp 覆蓋 cur
        cur.val = tmp.val;
    }
}
```

=== "Go"

```go title="binary_search_tree.go"
/* 刪除節點 */
func (bst *binarySearchTree) remove(num int) {
    cur := bst.root
    // 若樹為空,直接提前返回
    if cur == nil {
        return
    }
    // 待刪除節點之前的節點位置
    var pre *TreeNode = nil
    // 迴圈查詢,越過葉節點後跳出
    for cur != nil {
        if cur.Val == num {
            break
        }
        pre = cur
        if cur.Val.(int) < num {
            // 待刪除節點在右子樹中
            cur = cur.Right
        } else {
            // 待刪除節點在左子樹中
            cur = cur.Left
        }
    }
    // 若無待刪除節點,則直接返回
    if cur == nil {
        return
    }
    // 子節點數為 0 或 1
    if cur.Left == nil || cur.Right == nil {
        var child *TreeNode = nil
        // 取出待刪除節點的子節點
        if cur.Left != nil {
            child = cur.Left
        } else {
            child = cur.Right
        }
        // 刪除節點 cur
        if cur != bst.root {
            if pre.Left == cur {
                pre.Left = child
            } else {
                pre.Right = child
            }
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            bst.root = child
        }
        // 子節點數為 2
    } else {
        // 獲取中序走訪中待刪除節點 cur 的下一個節點
        tmp := cur.Right
        for tmp.Left != nil {
            tmp = tmp.Left
        }
        // 遞迴刪除節點 tmp
        bst.remove(tmp.Val.(int))
        // 用 tmp 覆蓋 cur
        cur.Val = tmp.Val
    }
}
```

=== "Swift"

```swift title="binary_search_tree.swift"
/* 刪除節點 */
func remove(num: Int) {
    // 若樹為空,直接提前返回
    if root == nil {
        return
    }
    var cur = root
    var pre: TreeNode?
    // 迴圈查詢,越過葉節點後跳出
    while cur != nil {
        // 找到待刪除節點,跳出迴圈
        if cur!.val == num {
            break
        }
        pre = cur
        // 待刪除節點在 cur 的右子樹中
        if cur!.val < num {
            cur = cur?.right
        }
        // 待刪除節點在 cur 的左子樹中
        else {
            cur = cur?.left
        }
    }
    // 若無待刪除節點,則直接返回
    if cur == nil {
        return
    }
    // 子節點數量 = 0 or 1
    if cur?.left == nil || cur?.right == nil {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        let child = cur?.left ?? cur?.right
        // 刪除節點 cur
        if cur !== root {
            if pre?.left === cur {
                pre?.left = child
            } else {
                pre?.right = child
            }
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            root = child
        }
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        var tmp = cur?.right
        while tmp?.left != nil {
            tmp = tmp?.left
        }
        // 遞迴刪除節點 tmp
        remove(num: tmp!.val)
        // 用 tmp 覆蓋 cur
        cur?.val = tmp!.val
    }
}
```

=== "JS"

```javascript title="binary_search_tree.js"
/* 刪除節點 */
remove(num) {
    // 若樹為空,直接提前返回
    if (this.root === null) return;
    let cur = this.root,
        pre = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 找到待刪除節點,跳出迴圈
        if (cur.val === num) break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 待刪除節點在 cur 的左子樹中
        else cur = cur.left;
    }
    // 若無待刪除節點,則直接返回
    if (cur === null) return;
    // 子節點數量 = 0 or 1
    if (cur.left === null || cur.right === null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        const child = cur.left !== null ? cur.left : cur.right;
        // 刪除節點 cur
        if (cur !== this.root) {
            if (pre.left === cur) pre.left = child;
            else pre.right = child;
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            this.root = child;
        }
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        let tmp = cur.right;
        while (tmp.left !== null) {
            tmp = tmp.left;
        }
        // 遞迴刪除節點 tmp
        this.remove(tmp.val);
        // 用 tmp 覆蓋 cur
        cur.val = tmp.val;
    }
}
```

=== "TS"

```typescript title="binary_search_tree.ts"
/* 刪除節點 */
remove(num: number): void {
    // 若樹為空,直接提前返回
    if (this.root === null) return;
    let cur: TreeNode | null = this.root,
        pre: TreeNode | null = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur !== null) {
        // 找到待刪除節點,跳出迴圈
        if (cur.val === num) break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur.val < num) cur = cur.right;
        // 待刪除節點在 cur 的左子樹中
        else cur = cur.left;
    }
    // 若無待刪除節點,則直接返回
    if (cur === null) return;
    // 子節點數量 = 0 or 1
    if (cur.left === null || cur.right === null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        const child: TreeNode | null =
            cur.left !== null ? cur.left : cur.right;
        // 刪除節點 cur
        if (cur !== this.root) {
            if (pre!.left === cur) pre!.left = child;
            else pre!.right = child;
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            this.root = child;
        }
    }
    // 子節點數量 = 2
    else {
        // 獲取中序走訪中 cur 的下一個節點
        let tmp: TreeNode | null = cur.right;
        while (tmp!.left !== null) {
            tmp = tmp!.left;
        }
        // 遞迴刪除節點 tmp
        this.remove(tmp!.val);
        // 用 tmp 覆蓋 cur
        cur.val = tmp!.val;
    }
}
```

=== "Dart"

```dart title="binary_search_tree.dart"
/* 刪除節點 */
void remove(int _num) {
  // 若樹為空,直接提前返回
  if (_root == null) return;
  TreeNode? cur = _root;
  TreeNode? pre = null;
  // 迴圈查詢,越過葉節點後跳出
  while (cur != null) {
    // 找到待刪除節點,跳出迴圈
    if (cur.val == _num) break;
    pre = cur;
    // 待刪除節點在 cur 的右子樹中
    if (cur.val < _num)
      cur = cur.right;
    // 待刪除節點在 cur 的左子樹中
    else
      cur = cur.left;
  }
  // 若無待刪除節點,直接返回
  if (cur == null) return;
  // 子節點數量 = 0 or 1
  if (cur.left == null || cur.right == null) {
    // 當子節點數量 = 0 / 1 時, child = null / 該子節點
    TreeNode? child = cur.left ?? cur.right;
    // 刪除節點 cur
    if (cur != _root) {
      if (pre!.left == cur)
        pre.left = child;
      else
        pre.right = child;
    } else {
      // 若刪除節點為根節點,則重新指定根節點
      _root = child;
    }
  } else {
    // 子節點數量 = 2
    // 獲取中序走訪中 cur 的下一個節點
    TreeNode? tmp = cur.right;
    while (tmp!.left != null) {
      tmp = tmp.left;
    }
    // 遞迴刪除節點 tmp
    remove(tmp.val);
    // 用 tmp 覆蓋 cur
    cur.val = tmp.val;
  }
}
```

=== "Rust"

```rust title="binary_search_tree.rs"
/* 刪除節點 */
pub fn remove(&mut self, num: i32) {
    // 若樹為空,直接提前返回
    if self.root.is_none() {
        return;
    }
    let mut cur = self.root.clone();
    let mut pre = None;
    // 迴圈查詢,越過葉節點後跳出
    while let Some(node) = cur.clone() {
        match num.cmp(&node.borrow().val) {
            // 找到待刪除節點,跳出迴圈
            Ordering::Equal => break,
            // 待刪除節點在 cur 的右子樹中
            Ordering::Greater => {
                pre = cur.clone();
                cur = node.borrow().right.clone();
            }
            // 待刪除節點在 cur 的左子樹中
            Ordering::Less => {
                pre = cur.clone();
                cur = node.borrow().left.clone();
            }
        }
    }
    // 若無待刪除節點,則直接返回
    if cur.is_none() {
        return;
    }
    let cur = cur.unwrap();
    let (left_child, right_child) = (cur.borrow().left.clone(), cur.borrow().right.clone());
    match (left_child.clone(), right_child.clone()) {
        // 子節點數量 = 0 or 1
        (None, None) | (Some(_), None) | (None, Some(_)) => {
            // 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點
            let child = left_child.or(right_child);
            let pre = pre.unwrap();
            // 刪除節點 cur
            if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {
                let left = pre.borrow().left.clone();
                if left.is_some() && Rc::ptr_eq(&left.as_ref().unwrap(), &cur) {
                    pre.borrow_mut().left = child;
                } else {
                    pre.borrow_mut().right = child;
                }
            } else {
                // 若刪除節點為根節點,則重新指定根節點
                self.root = child;
            }
        }
        // 子節點數量 = 2
        (Some(_), Some(_)) => {
            // 獲取中序走訪中 cur 的下一個節點
            let mut tmp = cur.borrow().right.clone();
            while let Some(node) = tmp.clone() {
                if node.borrow().left.is_some() {
                    tmp = node.borrow().left.clone();
                } else {
                    break;
                }
            }
            let tmpval = tmp.unwrap().borrow().val;
            // 遞迴刪除節點 tmp
            self.remove(tmpval);
            // 用 tmp 覆蓋 cur
            cur.borrow_mut().val = tmpval;
        }
    }
}
```

=== "C"

```c title="binary_search_tree.c"
/* 刪除節點 */
// 由於引入了 stdio.h ,此處無法使用 remove 關鍵詞
void removeItem(BinarySearchTree *bst, int num) {
    // 若樹為空,直接提前返回
    if (bst->root == NULL)
        return;
    TreeNode *cur = bst->root, *pre = NULL;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != NULL) {
        // 找到待刪除節點,跳出迴圈
        if (cur->val == num)
            break;
        pre = cur;
        if (cur->val < num) {
            // 待刪除節點在 root 的右子樹中
            cur = cur->right;
        } else {
            // 待刪除節點在 root 的左子樹中
            cur = cur->left;
        }
    }
    // 若無待刪除節點,則直接返回
    if (cur == NULL)
        return;
    // 判斷待刪除節點是否存在子節點
    if (cur->left == NULL || cur->right == NULL) {
        /* 子節點數量 = 0 or 1 */
        // 當子節點數量 = 0 / 1 時, child = nullptr / 該子節點
        TreeNode *child = cur->left != NULL ? cur->left : cur->right;
        // 刪除節點 cur
        if (pre->left == cur) {
            pre->left = child;
        } else {
            pre->right = child;
        }
        // 釋放記憶體
        free(cur);
    } else {
        /* 子節點數量 = 2 */
        // 獲取中序走訪中 cur 的下一個節點
        TreeNode *tmp = cur->right;
        while (tmp->left != NULL) {
            tmp = tmp->left;
        }
        int tmpVal = tmp->val;
        // 遞迴刪除節點 tmp
        removeItem(bst, tmp->val);
        // 用 tmp 覆蓋 cur
        cur->val = tmpVal;
    }
}
```

=== "Kotlin"

```kotlin title="binary_search_tree.kt"
/* 刪除節點 */
fun remove(num: Int) {
    // 若樹為空,直接提前返回
    if (root == null)
        return
    var cur = root
    var pre: TreeNode? = null
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到待刪除節點,跳出迴圈
        if (cur._val == num)
            break
        pre = cur
        // 待刪除節點在 cur 的右子樹中
        cur = if (cur._val < num)
            cur.right
        // 待刪除節點在 cur 的左子樹中
        else
            cur.left
    }
    // 若無待刪除節點,則直接返回
    if (cur == null)
        return
    // 子節點數量 = 0 or 1
    if (cur.left == null || cur.right == null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        val child = if (cur.left != null)
            cur.left
        else
            cur.right
        // 刪除節點 cur
        if (cur != root) {
            if (pre!!.left == cur)
                pre.left = child
            else
                pre.right = child
        } else {
            // 若刪除節點為根節點,則重新指定根節點
            root = child
        }
        // 子節點數量 = 2
    } else {
        // 獲取中序走訪中 cur 的下一個節點
        var tmp = cur.right
        while (tmp!!.left != null) {
            tmp = tmp.left
        }
        // 遞迴刪除節點 tmp
        remove(tmp._val)
        // 用 tmp 覆蓋 cur
        cur._val = tmp._val
    }
}
```

=== "Ruby"

```ruby title="binary_search_tree.rb"
[class]{BinarySearchTree}-[func]{remove}
```

=== "Zig"

```zig title="binary_search_tree.zig"
// 刪除節點
fn remove(self: *Self, num: T) void {
    // 若樹為空,直接提前返回
    if (self.root == null) return;
    var cur = self.root;
    var pre: ?*inc.TreeNode(T) = null;
    // 迴圈查詢,越過葉節點後跳出
    while (cur != null) {
        // 找到待刪除節點,跳出迴圈
        if (cur.?.val == num) break;
        pre = cur;
        // 待刪除節點在 cur 的右子樹中
        if (cur.?.val < num) {
            cur = cur.?.right;
        // 待刪除節點在 cur 的左子樹中
        } else {
            cur = cur.?.left;
        }
    }
    // 若無待刪除節點,則直接返回
    if (cur == null) return;
    // 子節點數量 = 0 or 1
    if (cur.?.left == null or cur.?.right == null) {
        // 當子節點數量 = 0 / 1 時, child = null / 該子節點
        var child = if (cur.?.left != null) cur.?.left else cur.?.right;
        // 刪除節點 cur
        if (pre.?.left == cur) {
            pre.?.left = child;
        } else {
            pre.?.right = child;
        }
    // 子節點數量 = 2
    } else {
        // 獲取中序走訪中 cur 的下一個節點
        var tmp = cur.?.right;
        while (tmp.?.left != null) {
            tmp = tmp.?.left;
        }
        var tmp_val = tmp.?.val;
        // 遞迴刪除節點 tmp
        self.remove(tmp.?.val);
        // 用 tmp 覆蓋 cur
        cur.?.val = tmp_val;
    }
}
```

??? pythontutor "視覺化執行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%20%20%20%20def%20remove%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20if%20cur%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20or%201%0A%20%20%20%20%20%20%20%20if%20cur.left%20is%20None%20or%20cur.right%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20/%201%20%E6%99%82%EF%BC%8C%20child%20%3D%20null%20/%20%E8%A9%B2%E5%AD%90%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20child%20%3D%20cur.left%20or%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur%20%21%3D%20self._root%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20if%20pre.left%20%3D%3D%20cur%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20child%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%202%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%8D%B2%E5%8F%96%E4%B8%AD%E5%BA%8F%E8%B5%B0%E8%A8%AA%E4%B8%AD%20cur%20%E7%9A%84%E4%B8%8B%E4%B8%80%E5%80%8B%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%3A%20TreeNode%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20while%20tmp.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20tmp.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%81%9E%E8%BF%B4%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20self.remove%28tmp.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%94%A8%20tmp%20%E8%A6%86%E8%93%8B%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20cur.val%20%3D%20tmp.val%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.remove%281%29%20%23%20%E5%BA%A6%E7%82%BA%200%0A%20%20%20%20bst.remove%282%29%20%23%20%E5%BA%A6%E7%82%BA%201%0A%20%20%20%20bst.remove%284%29%20%23%20%E5%BA%A6%E7%82%BA%202&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%A8%B9%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%29%3A%0A%20%20%20%20%20%20%20%20self.val%20%3D%20val%0A%20%20%20%20%20%20%20%20self.left%20%3D%20None%0A%20%20%20%20%20%20%20%20self.right%20%3D%20None%0A%0Aclass%20BinarySearchTree%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%22%22%22%0A%0A%20%20%20%20def%20__init__%28self%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%BB%BA%E6%A7%8B%E5%AD%90%22%22%22%0A%20%20%20%20%20%20%20%20self._root%20%3D%20None%0A%0A%20%20%20%20def%20insert%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E6%8F%92%E5%85%A5%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20node%20%3D%20TreeNode%28num%29%0A%20%20%20%20%20%20%20%20if%20pre.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20node%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20node%0A%0A%20%20%20%20def%20remove%28self%2C%20num%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20%22%22%22%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%22%22%22%0A%20%20%20%20%20%20%20%20if%20self._root%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%20%20%20%20%20%20%20%20%23%20%E6%9F%A5%E8%A9%A2%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20cur%2C%20pre%20%3D%20self._root%2C%20None%0A%20%20%20%20%20%20%20%20while%20cur%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3D%3D%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20%20%20%20%20pre%20%3D%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur.val%20%3C%20num%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20cur%20%3D%20cur.left%0A%20%20%20%20%20%20%20%20if%20cur%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%0A%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20or%201%0A%20%20%20%20%20%20%20%20if%20cur.left%20is%20None%20or%20cur.right%20is%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%95%B6%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%200%20/%201%20%E6%99%82%EF%BC%8C%20child%20%3D%20null%20/%20%E8%A9%B2%E5%AD%90%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20child%20%3D%20cur.left%20or%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20cur%20%21%3D%20self._root%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20if%20pre.left%20%3D%3D%20cur%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.left%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pre.right%20%3D%20child%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20self._root%20%3D%20child%0A%20%20%20%20%20%20%20%20%23%20%E5%AD%90%E7%AF%80%E9%BB%9E%E6%95%B8%E9%87%8F%20%3D%202%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%8D%B2%E5%8F%96%E4%B8%AD%E5%BA%8F%E8%B5%B0%E8%A8%AA%E4%B8%AD%20cur%20%E7%9A%84%E4%B8%8B%E4%B8%80%E5%80%8B%E7%AF%80%E9%BB%9E%0A%20%20%20%20%20%20%20%20%20%20%20%20tmp%3A%20TreeNode%20%3D%20cur.right%0A%20%20%20%20%20%20%20%20%20%20%20%20while%20tmp.left%20is%20not%20None%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20tmp%20%3D%20tmp.left%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%81%9E%E8%BF%B4%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%20tmp%0A%20%20%20%20%20%20%20%20%20%20%20%20self.remove%28tmp.val%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E7%94%A8%20tmp%20%E8%A6%86%E8%93%8B%20cur%0A%20%20%20%20%20%20%20%20%20%20%20%20cur.val%20%3D%20tmp.val%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%85%83%E6%90%9C%E5%B0%8B%E6%A8%B9%0A%20%20%20%20bst%20%3D%20BinarySearchTree%28%29%0A%20%20%20%20nums%20%3D%20%5B4%2C%202%2C%206%2C%201%2C%203%2C%205%2C%207%5D%0A%20%20%20%20for%20num%20in%20nums%3A%0A%20%20%20%20%20%20%20%20bst.insert%28num%29%0A%0A%20%20%20%20%23%20%E5%88%AA%E9%99%A4%E7%AF%80%E9%BB%9E%0A%20%20%20%20bst.remove%281%29%20%23%20%E5%BA%A6%E7%82%BA%200%0A%20%20%20%20bst.remove%282%29%20%23%20%E5%BA%A6%E7%82%BA%201%0A%20%20%20%20bst.remove%284%29%20%23%20%E5%BA%A6%E7%82%BA%202&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=162&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>

4.   中序走訪有序

如圖 7-22 所示,二元樹的中序走訪遵循“左 \rightarrow\rightarrow 右”的走訪順序,而二元搜尋樹滿足“左子節點 < 根節點 < 右子節點”的大小關係。

這意味著在二元搜尋樹中進行中序走訪時,總是會優先走訪下一個最小節點,從而得出一個重要性質:二元搜尋樹的中序走訪序列是升序的

利用中序走訪升序的性質,我們在二元搜尋樹中獲取有序資料僅需 O(n) 時間,無須進行額外的排序操作,非常高效。

二元搜尋樹的中序走訪序列{ class="animation-figure" }

圖 7-22   二元搜尋樹的中序走訪序列

7.4.2   二元搜尋樹的效率

給定一組資料,我們考慮使用陣列或二元搜尋樹儲存。觀察表 7-2 ,二元搜尋樹的各項操作的時間複雜度都是對數階,具有穩定且高效的效能。只有在高頻新增、低頻查詢刪除資料的場景下,陣列比二元搜尋樹的效率更高。

表 7-2   陣列與搜尋樹的效率對比

無序陣列 二元搜尋樹
查詢元素 O(n) O(\log n)
插入元素 O(1) O(\log n)
刪除元素 O(n) O(\log n)

在理想情況下,二元搜尋樹是“平衡”的,這樣就可以在 \log n 輪迴圈內查詢任意節點。

然而,如果我們在二元搜尋樹中不斷地插入和刪除節點,可能導致二元樹退化為圖 7-23 所示的鏈結串列,這時各種操作的時間複雜度也會退化為 O(n)

二元搜尋樹退化{ class="animation-figure" }

圖 7-23   二元搜尋樹退化

7.4.3   二元搜尋樹常見應用

  • 用作系統中的多級索引,實現高效的查詢、插入、刪除操作。
  • 作為某些搜尋演算法的底層資料結構。
  • 用於儲存資料流,以保持其有序狀態。