You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_tree/binary_search_tree.md

1500 lines
47 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
---
# 7.4   二叉搜索树
如图 7-16 所示,「二叉搜索树 binary search tree」满足以下条件。
1. 对于根节点,左子树中所有节点的值 $<$ 根节点的值 $<$ 右子树中所有节点的值。
2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 `1.`
![二叉搜索树](binary_search_tree.assets/binary_search_tree.png)
<p align="center"> 图 7-16 &nbsp; 二叉搜索树 </p>
## 7.4.1 &nbsp; 二叉搜索树的操作
我们将二叉搜索树封装为一个类 `ArrayBinaryTree` ,并声明一个成员变量 `root` ,指向树的根节点。
### 1. &nbsp; 查找节点
给定目标节点值 `num` ,可以根据二叉搜索树的性质来查找。如图 7-17 所示,我们声明一个节点 `cur` ,从二叉树的根节点 `root` 出发,循环比较节点值 `cur.val``num` 之间的大小关系。
-`cur.val < num` ,说明目标节点在 `cur` 的右子树中,因此执行 `cur = cur.right`
-`cur.val > num` ,说明目标节点在 `cur` 的左子树中,因此执行 `cur = cur.left`
-`cur.val = num` ,说明找到目标节点,跳出循环并返回该节点。
=== "<1>"
![二叉搜索树查找节点示例](binary_search_tree.assets/bst_search_step1.png)
=== "<2>"
![bst_search_step2](binary_search_tree.assets/bst_search_step2.png)
=== "<3>"
![bst_search_step3](binary_search_tree.assets/bst_search_step3.png)
=== "<4>"
![bst_search_step4](binary_search_tree.assets/bst_search_step4.png)
<p align="center"> 图 7-17 &nbsp; 二叉搜索树查找节点示例 </p>
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 $O(\log n)$ 时间。
=== "Python"
```python title="binary_search_tree.py"
def search(self, num: int) -> TreeNode | None:
"""查找节点"""
cur = self.__root
# 循环查找,越过叶节点后跳出
while cur is not None:
# 目标节点在 cur 的右子树中
if cur.val < num:
cur = cur.right
# 目标节点在 cur 的左子树中
elif cur.val > num:
cur = cur.left
# 找到目标节点,跳出循环
else:
break
return cur
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 查找节点 */
TreeNode *search(int num) {
TreeNode *cur = root;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 目标节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 目标节点在 cur 的左子树中
else if (cur->val > num)
cur = cur->left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
```
=== "Java"
```java title="binary_search_tree.java"
/* 查找节点 */
TreeNode search(int num) {
TreeNode cur = root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
```
=== "C#"
```csharp title="binary_search_tree.cs"
/* 查找节点 */
TreeNode? search(int num) {
TreeNode? cur = root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num) cur =
cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
```
=== "Go"
```go title="binary_search_tree.go"
/* 查找节点 */
func (bst *binarySearchTree) search(num int) *TreeNode {
node := bst.root
// 循环查找,越过叶节点后跳出
for node != nil {
if node.Val.(int) < num {
// 目标节点在 cur 的右子树中
node = node.Right
} else if node.Val.(int) > num {
// 目标节点在 cur 的左子树中
node = node.Left
} else {
// 找到目标节点,跳出循环
break
}
}
// 返回目标节点
return node
}
```
=== "Swift"
```swift title="binary_search_tree.swift"
/* 查找节点 */
func search(num: Int) -> TreeNode? {
var cur = root
// 循环查找,越过叶节点后跳出
while cur != nil {
// 目标节点在 cur 的右子树中
if cur!.val < num {
cur = cur?.right
}
// 目标节点在 cur 的左子树中
else if cur!.val > num {
cur = cur?.left
}
// 找到目标节点,跳出循环
else {
break
}
}
// 返回目标节点
return cur
}
```
=== "JS"
```javascript title="binary_search_tree.js"
/* 查找节点 */
search(num) {
let cur = this.root;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 目标节点在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num) cur = cur.left;
// 找到目标节点,跳出循环
else break;
}
// 返回目标节点
return cur;
}
```
=== "TS"
```typescript title="binary_search_tree.ts"
/* 查找节点 */
search(num: number): TreeNode | null {
let cur = this.root;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 目标节点在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num) cur = cur.left;
// 找到目标节点,跳出循环
else break;
}
// 返回目标节点
return cur;
}
```
=== "Dart"
```dart title="binary_search_tree.dart"
/* 查找节点 */
TreeNode? search(int num) {
TreeNode? cur = _root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 目标节点在 cur 的左子树中
else if (cur.val > num)
cur = cur.left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
```
=== "Rust"
```rust title="binary_search_tree.rs"
/* 查找节点 */
pub fn search(&self, num: i32) -> Option<TreeNodeRc> {
let mut cur = self.root.clone();
// 循环查找,越过叶节点后跳出
while let Some(node) = cur.clone() {
// 目标节点在 cur 的右子树中
if node.borrow().val < num {
cur = node.borrow().right.clone();
}
// 目标节点在 cur 的左子树中
else if node.borrow().val > num {
cur = node.borrow().left.clone();
}
// 找到目标节点,跳出循环
else {
break;
}
}
// 返回目标节点
cur
}
```
=== "C"
```c title="binary_search_tree.c"
/* 查找节点 */
TreeNode *search(binarySearchTree *bst, int num) {
TreeNode *cur = bst->root;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
if (cur->val < num) {
// 目标节点在 cur 的右子树中
cur = cur->right;
} else if (cur->val > num) {
// 目标节点在 cur 的左子树中
cur = cur->left;
} else {
// 找到目标节点,跳出循环
break;
}
}
// 返回目标节点
return cur;
}
```
=== "Zig"
```zig title="binary_search_tree.zig"
// 查找节点
fn search(self: *Self, num: T) ?*inc.TreeNode(T) {
var cur = self.root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.?.val < num) {
cur = cur.?.right;
// 目标节点在 cur 的左子树中
} else if (cur.?.val > num) {
cur = cur.?.left;
// 找到目标节点,跳出循环
} else {
break;
}
}
// 返回目标节点
return cur;
}
```
### 2. &nbsp; 插入节点
给定一个待插入元素 `num` ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图 7-18 所示。
1. **查找插入位置**:与查找操作相似,从根节点出发,根据当前节点值和 `num` 的大小关系循环向下搜索,直到越过叶节点(遍历至 $\text{None}$ )时跳出循环。
2. **在该位置插入节点**:初始化节点 `num` ,将该节点置于 $\text{None}$ 的位置。
![在二叉搜索树中插入节点](binary_search_tree.assets/bst_insert.png)
<p align="center"> 图 7-18 &nbsp; 在二叉搜索树中插入节点 </p>
在代码实现中,需要注意以下两点。
- 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
- 为了实现插入节点,我们需要借助节点 `pre` 保存上一轮循环的节点。这样在遍历至 $\text{None}$ 时,我们可以获取到其父节点,从而完成节点插入操作。
=== "Python"
```python title="binary_search_tree.py"
def insert(self, num: int):
"""插入节点"""
# 若树为空,则初始化根节点
if self.__root is None:
self.__root = TreeNode(num)
return
# 循环查找,越过叶节点后跳出
cur, pre = self.__root, None
while cur is not None:
# 找到重复节点,直接返回
if cur.val == num:
return
pre = cur
# 插入位置在 cur 的右子树中
if cur.val < num:
cur = cur.right
# 插入位置在 cur 的左子树中
else:
cur = cur.left
# 插入节点
node = TreeNode(num)
if pre.val < num:
pre.right = node
else:
pre.left = node
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 插入节点 */
void insert(int num) {
// 若树为空,则初始化根节点
if (root == nullptr) {
root = new TreeNode(num);
return;
}
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到重复节点,直接返回
if (cur->val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 插入位置在 cur 的左子树中
else
cur = cur->left;
}
// 插入节点
TreeNode *node = new TreeNode(num);
if (pre->val < num)
pre->right = node;
else
pre->left = node;
}
```
=== "Java"
```java title="binary_search_tree.java"
/* 插入节点 */
void insert(int num) {
// 若树为空,则初始化根节点
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点
TreeNode node = new TreeNode(num);
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
```
=== "C#"
```csharp title="binary_search_tree.cs"
/* 插入节点 */
void insert(int num) {
// 若树为空,则初始化根节点
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode? cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点
TreeNode node = new TreeNode(num);
if (pre != null) {
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
}
```
=== "Go"
```go title="binary_search_tree.go"
/* 插入节点 */
func (bst *binarySearchTree) insert(num int) {
cur := bst.root
// 若树为空,则初始化根节点
if cur == nil {
bst.root = NewTreeNode(num)
return
}
// 待插入节点之前的节点位置
var pre *TreeNode = nil
// 循环查找,越过叶节点后跳出
for cur != nil {
if cur.Val == num {
return
}
pre = cur
if cur.Val.(int) < num {
cur = cur.Right
} else {
cur = cur.Left
}
}
// 插入节点
node := NewTreeNode(num)
if pre.Val.(int) < num {
pre.Right = node
} else {
pre.Left = node
}
}
```
=== "Swift"
```swift title="binary_search_tree.swift"
/* 插入节点 */
func insert(num: Int) {
// 若树为空,则初始化根节点
if root == nil {
root = TreeNode(x: num)
return
}
var cur = root
var pre: TreeNode?
// 循环查找,越过叶节点后跳出
while cur != nil {
// 找到重复节点,直接返回
if cur!.val == num {
return
}
pre = cur
// 插入位置在 cur 的右子树中
if cur!.val < num {
cur = cur?.right
}
// 插入位置在 cur 的左子树中
else {
cur = cur?.left
}
}
// 插入节点
let node = TreeNode(x: num)
if pre!.val < num {
pre?.right = node
} else {
pre?.left = node
}
}
```
=== "JS"
```javascript title="binary_search_tree.js"
/* 插入节点 */
insert(num) {
// 若树为空,则初始化根节点
if (this.root === null) {
this.root = new TreeNode(num);
return;
}
let cur = this.root,
pre = null;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 找到重复节点,直接返回
if (cur.val === num) return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 插入位置在 cur 的左子树中
else cur = cur.left;
}
// 插入节点
const node = new TreeNode(num);
if (pre.val < num) pre.right = node;
else pre.left = node;
}
```
=== "TS"
```typescript title="binary_search_tree.ts"
/* 插入节点 */
insert(num: number): void {
// 若树为空,则初始化根节点
if (this.root === null) {
this.root = new TreeNode(num);
return;
}
let cur: TreeNode | null = this.root,
pre: TreeNode | null = null;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 找到重复节点,直接返回
if (cur.val === num) return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 插入位置在 cur 的左子树中
else cur = cur.left;
}
// 插入节点
const node = new TreeNode(num);
if (pre!.val < num) pre!.right = node;
else pre!.left = node;
}
```
=== "Dart"
```dart title="binary_search_tree.dart"
/* 插入节点 */
void insert(int num) {
// 若树为空,则初始化根节点
if (_root == null) {
_root = TreeNode(num);
return;
}
TreeNode? cur = _root;
TreeNode? pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.val == num) return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子树中
else
cur = cur.left;
}
// 插入节点
TreeNode? node = TreeNode(num);
if (pre!.val < num)
pre.right = node;
else
pre.left = node;
}
```
=== "Rust"
```rust title="binary_search_tree.rs"
/* 插入节点 */
pub fn insert(&mut self, num: i32) {
// 若树为空,则初始化根节点
if self.root.is_none() {
self.root = Some(TreeNode::new(num));
return;
}
let mut cur = self.root.clone();
let mut pre = None;
// 循环查找,越过叶节点后跳出
while let Some(node) = cur.clone() {
// 找到重复节点,直接返回
if node.borrow().val == num {
return;
}
// 插入位置在 cur 的右子树中
pre = cur.clone();
if node.borrow().val < num {
cur = node.borrow().right.clone();
}
// 插入位置在 cur 的左子树中
else {
cur = node.borrow().left.clone();
}
}
// 插入节点
let node = TreeNode::new(num);
let pre = pre.unwrap();
if pre.borrow().val < num {
pre.borrow_mut().right = Some(Rc::clone(&node));
} else {
pre.borrow_mut().left = Some(Rc::clone(&node));
}
}
```
=== "C"
```c title="binary_search_tree.c"
/* 插入节点 */
void insert(binarySearchTree *bst, int num) {
// 若树为空,则初始化根节点
if (bst->root == NULL) {
bst->root = newTreeNode(num);
return;
}
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
// 找到重复节点,直接返回
if (cur->val == num) {
return;
}
pre = cur;
if (cur->val < num) {
// 插入位置在 cur 的右子树中
cur = cur->right;
} else {
// 插入位置在 cur 的左子树中
cur = cur->left;
}
}
// 插入节点
TreeNode *node = newTreeNode(num);
if (pre->val < num) {
pre->right = node;
} else {
pre->left = node;
}
}
```
=== "Zig"
```zig title="binary_search_tree.zig"
// 插入节点
fn insert(self: *Self, num: T) !void {
// 若树为空,则初始化根节点
if (self.root == null) {
self.root = try self.mem_allocator.create(inc.TreeNode(T));
return;
}
var cur = self.root;
var pre: ?*inc.TreeNode(T) = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到重复节点,直接返回
if (cur.?.val == num) return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur.?.val < num) {
cur = cur.?.right;
// 插入位置在 cur 的左子树中
} else {
cur = cur.?.left;
}
}
// 插入节点
var node = try self.mem_allocator.create(inc.TreeNode(T));
node.init(num);
if (pre.?.val < num) {
pre.?.right = node;
} else {
pre.?.left = node;
}
}
```
与查找节点相同,插入节点使用 $O(\log n)$ 时间。
### 3. &nbsp; 删除节点
先在二叉树中查找到目标节点,再将其从二叉树中删除。
与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。
因此,我们需要根据目标节点的子节点数量,共分为 01 2 这三种情况,执行对应的删除节点操作。
如图 7-19 所示,当待删除节点的度为 $0$ 时,表示该节点是叶节点,可以直接删除。
![在二叉搜索树中删除节点(度为 0 ](binary_search_tree.assets/bst_remove_case1.png)
<p align="center"> 图 7-19 &nbsp; 在二叉搜索树中删除节点(度为 0 </p>
如图 7-20 所示,当待删除节点的度为 $1$ 时,将待删除节点替换为其子节点即可。
![在二叉搜索树中删除节点(度为 1 ](binary_search_tree.assets/bst_remove_case2.png)
<p align="center"> 图 7-20 &nbsp; 在二叉搜索树中删除节点(度为 1 </p>
当待删除节点的度为 $2$ 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左 $<$ 根 $<$ 右”的性质,**因此这个节点可以是右子树的最小节点或左子树的最大节点**。
假设我们选择右子树的最小节点(即中序遍历的下一个节点),则删除操作流程如图 7-21 所示。
1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 `tmp`
2.`tmp` 的值覆盖待删除节点的值,并在树中递归删除节点 `tmp`
=== "<1>"
![在二叉搜索树中删除节点(度为 2 ](binary_search_tree.assets/bst_remove_case3_step1.png)
=== "<2>"
![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png)
=== "<3>"
![bst_remove_case3_step3](binary_search_tree.assets/bst_remove_case3_step3.png)
=== "<4>"
![bst_remove_case3_step4](binary_search_tree.assets/bst_remove_case3_step4.png)
<p align="center"> 图 7-21 &nbsp; 在二叉搜索树中删除节点(度为 2 </p>
删除节点操作同样使用 $O(\log n)$ 时间,其中查找待删除节点需要 $O(\log n)$ 时间,获取中序遍历后继节点需要 $O(\log n)$ 时间。
=== "Python"
```python title="binary_search_tree.py"
def remove(self, num: int):
"""删除节点"""
# 若树为空,直接提前返回
if self.__root is None:
return
# 循环查找,越过叶节点后跳出
cur, pre = self.__root, None
while cur is not None:
# 找到待删除节点,跳出循环
if cur.val == num:
break
pre = cur
# 待删除节点在 cur 的右子树中
if cur.val < num:
cur = cur.right
# 待删除节点在 cur 的左子树中
else:
cur = cur.left
# 若无待删除节点,则直接返回
if cur is None:
return
# 子节点数量 = 0 or 1
if cur.left is None or cur.right is None:
# 当子节点数量 = 0 / 1 时, child = null / 该子节点
child = cur.left or cur.right
# 删除节点 cur
if cur != self.__root:
if pre.left == cur:
pre.left = child
else:
pre.right = child
else:
# 若删除节点为根节点,则重新指定根节点
self.__root = child
# 子节点数量 = 2
else:
# 获取中序遍历中 cur 的下一个节点
tmp: TreeNode = cur.right
while tmp.left is not None:
tmp = tmp.left
# 递归删除节点 tmp
self.remove(tmp.val)
# tmp 覆盖 cur
cur.val = tmp.val
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 删除节点 */
void remove(int num) {
// 若树为空,直接提前返回
if (root == nullptr)
return;
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 待删除节点在 cur 的左子树中
else
cur = cur->left;
}
// 若无待删除节点,则直接返回
if (cur == nullptr)
return;
// 子节点数量 = 0 or 1
if (cur->left == nullptr || cur->right == nullptr) {
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
// 删除节点 cur
if (cur != root) {
if (pre->left == cur)
pre->left = child;
else
pre->right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
// 释放内存
delete cur;
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != nullptr) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
remove(tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
}
}
```
=== "Java"
```java title="binary_search_tree.java"
/* 删除节点 */
void remove(int num) {
// 若树为空,直接提前返回
if (root == null)
return;
TreeNode cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur == null)
return;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode child = cur.left != null ? cur.left : cur.right;
// 删除节点 cur
if (cur != root) {
if (pre.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
remove(tmp.val);
// tmp 覆盖 cur
cur.val = tmp.val;
}
}
```
=== "C#"
```csharp title="binary_search_tree.cs"
/* 删除节点 */
void remove(int num) {
// 若树为空,直接提前返回
if (root == null)
return;
TreeNode? cur = root, pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur == null)
return;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode? child = cur.left != null ? cur.left : cur.right;
// 删除节点 cur
if (cur != root) {
if (pre.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode? tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
remove(tmp.val);
// tmp 覆盖 cur
cur.val = tmp.val;
}
}
```
=== "Go"
```go title="binary_search_tree.go"
/* 删除节点 */
func (bst *binarySearchTree) remove(num int) {
cur := bst.root
// 若树为空,直接提前返回
if cur == nil {
return
}
// 待删除节点之前的节点位置
var pre *TreeNode = nil
// 循环查找,越过叶节点后跳出
for cur != nil {
if cur.Val == num {
break
}
pre = cur
if cur.Val.(int) < num {
// 待删除节点在右子树中
cur = cur.Right
} else {
// 待删除节点在左子树中
cur = cur.Left
}
}
// 若无待删除节点,则直接返回
if cur == nil {
return
}
// 子节点数为 0 1
if cur.Left == nil || cur.Right == nil {
var child *TreeNode = nil
// 取出待删除节点的子节点
if cur.Left != nil {
child = cur.Left
} else {
child = cur.Right
}
// 删除节点 cur
if cur != bst.root {
if pre.Left == cur {
pre.Left = child
} else {
pre.Right = child
}
} else {
// 若删除节点为根节点,则重新指定根节点
bst.root = child
}
// 子节点数为 2
} else {
// 获取中序遍历中待删除节点 cur 的下一个节点
tmp := cur.Right
for tmp.Left != nil {
tmp = tmp.Left
}
// 递归删除节点 tmp
bst.remove(tmp.Val.(int))
// tmp 覆盖 cur
cur.Val = tmp.Val
}
}
```
=== "Swift"
```swift title="binary_search_tree.swift"
/* 删除节点 */
func remove(num: Int) {
// 若树为空,直接提前返回
if root == nil {
return
}
var cur = root
var pre: TreeNode?
// 循环查找,越过叶节点后跳出
while cur != nil {
// 找到待删除节点,跳出循环
if cur!.val == num {
break
}
pre = cur
// 待删除节点在 cur 的右子树中
if cur!.val < num {
cur = cur?.right
}
// 待删除节点在 cur 的左子树中
else {
cur = cur?.left
}
}
// 若无待删除节点,则直接返回
if cur == nil {
return
}
// 子节点数量 = 0 or 1
if cur?.left == nil || cur?.right == nil {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
let child = cur?.left != nil ? cur?.left : cur?.right
// 删除节点 cur
if cur !== root {
if pre?.left === cur {
pre?.left = child
} else {
pre?.right = child
}
} else {
// 若删除节点为根节点,则重新指定根节点
root = child
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
var tmp = cur?.right
while tmp?.left != nil {
tmp = tmp?.left
}
// 递归删除节点 tmp
remove(num: tmp!.val)
// tmp 覆盖 cur
cur?.val = tmp!.val
}
}
```
=== "JS"
```javascript title="binary_search_tree.js"
/* 删除节点 */
remove(num) {
// 若树为空,直接提前返回
if (this.root === null) return;
let cur = this.root,
pre = null;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 找到待删除节点,跳出循环
if (cur.val === num) break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 待删除节点在 cur 的左子树中
else cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur === null) return;
// 子节点数量 = 0 or 1
if (cur.left === null || cur.right === null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
const child = cur.left !== null ? cur.left : cur.right;
// 删除节点 cur
if (cur !== this.root) {
if (pre.left === cur) pre.left = child;
else pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
this.root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
let tmp = cur.right;
while (tmp.left !== null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
this.remove(tmp.val);
// tmp 覆盖 cur
cur.val = tmp.val;
}
}
```
=== "TS"
```typescript title="binary_search_tree.ts"
/* 删除节点 */
remove(num: number): void {
// 若树为空,直接提前返回
if (this.root === null) return;
let cur: TreeNode | null = this.root,
pre: TreeNode | null = null;
// 循环查找,越过叶节点后跳出
while (cur !== null) {
// 找到待删除节点,跳出循环
if (cur.val === num) break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num) cur = cur.right;
// 待删除节点在 cur 的左子树中
else cur = cur.left;
}
// 若无待删除节点,则直接返回
if (cur === null) return;
// 子节点数量 = 0 or 1
if (cur.left === null || cur.right === null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
const child: TreeNode | null =
cur.left !== null ? cur.left : cur.right;
// 删除节点 cur
if (cur !== this.root) {
if (pre!.left === cur) pre!.left = child;
else pre!.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
this.root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
let tmp: TreeNode | null = cur.right;
while (tmp!.left !== null) {
tmp = tmp!.left;
}
// 递归删除节点 tmp
this.remove(tmp!.val);
// tmp 覆盖 cur
cur.val = tmp!.val;
}
}
```
=== "Dart"
```dart title="binary_search_tree.dart"
/* 删除节点 */
void remove(int num) {
// 若树为空,直接提前返回
if (_root == null) return;
TreeNode? cur = _root;
TreeNode? pre = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.val == num) break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.val < num)
cur = cur.right;
// 待删除节点在 cur 的左子树中
else
cur = cur.left;
}
// 若无待删除节点,直接返回
if (cur == null) return;
// 子节点数量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
TreeNode? child = cur.left ?? cur.right;
// 删除节点 cur
if (cur != _root) {
if (pre!.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
_root = child;
}
} else {
// 子节点数量 = 2
// 获取中序遍历中 cur 的下一个节点
TreeNode? tmp = cur.right;
while (tmp!.left != null) {
tmp = tmp.left;
}
// 递归删除节点 tmp
remove(tmp.val);
// tmp 覆盖 cur
cur.val = tmp.val;
}
}
```
=== "Rust"
```rust title="binary_search_tree.rs"
/* 删除节点 */
pub fn remove(&mut self, num: i32) {
// 若树为空,直接提前返回
if self.root.is_none() {
return;
}
let mut cur = self.root.clone();
let mut pre = None;
// 循环查找,越过叶节点后跳出
while let Some(node) = cur.clone() {
// 找到待删除节点,跳出循环
if node.borrow().val == num {
break;
}
// 待删除节点在 cur 的右子树中
pre = cur.clone();
if node.borrow().val < num {
cur = node.borrow().right.clone();
}
// 待删除节点在 cur 的左子树中
else {
cur = node.borrow().left.clone();
}
}
// 若无待删除节点,则直接返回
if cur.is_none() {
return;
}
let cur = cur.unwrap();
// 子节点数量 = 0 or 1
if cur.borrow().left.is_none() || cur.borrow().right.is_none() {
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
let child = cur.borrow().left.clone().or_else(|| cur.borrow().right.clone());
let pre = pre.unwrap();
let left = pre.borrow().left.clone().unwrap();
// 删除节点 cur
if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {
if Rc::ptr_eq(&left, &cur) {
pre.borrow_mut().left = child;
} else {
pre.borrow_mut().right = child;
}
} else {
// 若删除节点为根节点,则重新指定根节点
self.root = child;
}
}
// 子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
let mut tmp = cur.borrow().right.clone();
while let Some(node) = tmp.clone() {
if node.borrow().left.is_some() {
tmp = node.borrow().left.clone();
} else {
break;
}
}
let tmpval = tmp.unwrap().borrow().val;
// 递归删除节点 tmp
self.remove(tmpval);
// tmp 覆盖 cur
cur.borrow_mut().val = tmpval;
}
}
```
=== "C"
```c title="binary_search_tree.c"
/* 删除节点 */
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
void removeNode(binarySearchTree *bst, int num) {
// 若树为空,直接提前返回
if (bst->root == NULL)
return;
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
pre = cur;
if (cur->val < num) {
// 待删除节点在 root 的右子树中
cur = cur->right;
} else {
// 待删除节点在 root 的左子树中
cur = cur->left;
}
}
// 若无待删除节点,则直接返回
if (cur == NULL)
return;
// 判断待删除节点是否存在子节点
if (cur->left == NULL || cur->right == NULL) {
/* 子节点数量 = 0 or 1 */
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
TreeNode *child = cur->left != NULL ? cur->left : cur->right;
// 删除节点 cur
if (pre->left == cur) {
pre->left = child;
} else {
pre->right = child;
}
} else {
/* 子节点数量 = 2 */
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != NULL) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
removeNode(bst, tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
}
}
```
=== "Zig"
```zig title="binary_search_tree.zig"
// 删除节点
fn remove(self: *Self, num: T) void {
// 若树为空,直接提前返回
if (self.root == null) return;
var cur = self.root;
var pre: ?*inc.TreeNode(T) = null;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 找到待删除节点,跳出循环
if (cur.?.val == num) break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur.?.val < num) {
cur = cur.?.right;
// 待删除节点在 cur 的左子树中
} else {
cur = cur.?.left;
}
}
// 若无待删除节点,则直接返回
if (cur == null) return;
// 子节点数量 = 0 or 1
if (cur.?.left == null or cur.?.right == null) {
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
var child = if (cur.?.left != null) cur.?.left else cur.?.right;
// 删除节点 cur
if (pre.?.left == cur) {
pre.?.left = child;
} else {
pre.?.right = child;
}
// 子节点数量 = 2
} else {
// 获取中序遍历中 cur 的下一个节点
var tmp = cur.?.right;
while (tmp.?.left != null) {
tmp = tmp.?.left;
}
var tmp_val = tmp.?.val;
// 递归删除节点 tmp
self.remove(tmp.?.val);
// tmp 覆盖 cur
cur.?.val = tmp_val;
}
}
```
### 4. &nbsp; 中序遍历有序
如图 7-22 所示,二叉树的中序遍历遵循“左 $\rightarrow$ $\rightarrow$ 右”的遍历顺序,而二叉搜索树满足“左子节点 $<$ 根节点 $<$ 右子节点”的大小关系。
这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:**二叉搜索树的中序遍历序列是升序的**。
利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 $O(n)$ 时间,无须进行额外的排序操作,非常高效。
![二叉搜索树的中序遍历序列](binary_search_tree.assets/bst_inorder_traversal.png)
<p align="center"> 图 7-22 &nbsp; 二叉搜索树的中序遍历序列 </p>
## 7.4.2 &nbsp; 二叉搜索树的效率
给定一组数据,我们考虑使用数组或二叉搜索树存储。观察表 7-2 ,二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能表现。只有在高频添加、低频查找删除的数据适用场景下,数组比二叉搜索树的效率更高。
<p align="center"> 表 7-2 &nbsp; 数组与搜索树的效率对比 </p>
<div class="center-table" markdown>
| | 无序数组 | 二叉搜索树 |
| -------- | -------- | ----------- |
| 查找元素 | $O(n)$ | $O(\log n)$ |
| 插入元素 | $O(1)$ | $O(\log n)$ |
| 删除元素 | $O(n)$ | $O(\log n)$ |
</div>
在理想情况下,二叉搜索树是“平衡”的,这样就可以在 $\log n$ 轮循环内查找任意节点。
然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为图 7-23 所示的链表,这时各种操作的时间复杂度也会退化为 $O(n)$ 。
![二叉搜索树的退化](binary_search_tree.assets/bst_degradation.png)
<p align="center"> 图 7-23 &nbsp; 二叉搜索树的退化 </p>
## 7.4.3 &nbsp; 二叉搜索树常见应用
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
- 用于存储数据流,以保持其有序状态。