You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/chapter_backtracking/n_queens_problem/index.html

4548 lines
310 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/en/chapter_backtracking/n_queens_problem/">
<link rel="prev" href="../subset_sum_problem/">
<link rel="next" href="../summary/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
<title>13.4 n queens problem - Hello Algo</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#134-n-queens-problem" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<button class="md-banner__button md-icon" aria-label="Don't show this again">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>Welcome to contribute to Chinese-to-English translation! Please visit <a href="https://github.com/krahets/hello-algo/issues/914">#914</a> for more details.</span>
</div>
</div>
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href="../.." title="Hello Algo" class="md-header__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello Algo
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
13.4 n queens problem
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="Dark mode" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="Dark mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="Light mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Light mode" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="Select language">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/chapter_backtracking/n_queens_problem/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/chapter_backtracking/n_queens_problem/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/chapter_backtracking/n_queens_problem/" hreflang="en" class="md-select__link">
English
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello Algo" class="md-nav__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello Algo
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
<span class="md-ellipsis">
Before starting
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
Before starting
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
Chapter 0. Preface
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
Chapter 0. Preface
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 About this book
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 How to read
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
Chapter 1. Encounter with algorithms
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
Chapter 1. Encounter with algorithms
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 Algorithms are everywhere
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 What is an algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
Chapter 2. Complexity analysis
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
Chapter 2. Complexity analysis
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 Algorithm efficiency assessment
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 Iteration and recursion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 Time complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 Space complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
Chapter 3. Data structures
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
Chapter 3. Data structures
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 Classification of data structures
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 Basic data types
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 Number encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 Character encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
Chapter 4. Array and linked list
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
Chapter 4. Array and linked list
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 Array
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 Linked list
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 List
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 Memory and cache *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
Chapter 5. Stack and queue
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
Chapter 5. Stack and queue
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 Stack
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 Queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 Double-ended queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
Chapter 6. Hash table
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
Chapter 6. Hash table
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 Hash table
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 Hash collision
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 Hash algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
Chapter 7. Tree
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
Chapter 7. Tree
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 Binary tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 Binary tree traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 Array Representation of tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 Binary Search tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 AVL tree *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
Chapter 8. Heap
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
Chapter 8. Heap
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 Heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 Building a heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 Top-k problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
Chapter 9. Graph
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
Chapter 9. Graph
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 Graph
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 Basic graph operations
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 Graph traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
Chapter 10. Searching
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
Chapter 10. Searching
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 Binary search
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 Binary search insertion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 Binary search boundaries
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 Hashing optimization strategies
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 Search algorithms revisited
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
Chapter 11. Sorting
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
Chapter 11. Sorting
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 Sorting algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 Selection sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 Bubble sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 Insertion sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 Quick sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 Merge sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 Heap sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 Bucket sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 Counting sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 Radix sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
Chapter 12. Divide and conquer
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
Chapter 12. Divide and conquer
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 Divide and conquer algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 Divide and conquer search strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 Building binary tree problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 Tower of Hanoi Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
Chapter 13. Backtracking
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
Chapter 13. Backtracking
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 Backtracking algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 Permutation problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 Subset sum problem
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
13.4 n queens problem
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
13.4 n queens problem
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1-row-by-row-placing-strategy" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Row-by-row placing strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-column-and-diagonal-pruning" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Column and diagonal pruning
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-code-implementation" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Code implementation
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
Chapter 14. Dynamic programming
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
Chapter 14. Dynamic programming
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 Introduction to dynamic programming
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 Characteristics of DP problems
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 DP problem-solving approach¶
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 0-1 Knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 Unbounded knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 Edit distance problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
Chapter 15. Greedy
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
Chapter 15. Greedy
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 Greedy algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 Fractional knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 Maximum capacity problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 Maximum product cutting problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
Chapter 16. Appendix
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
Chapter 16. Appendix
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 Installation
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 Contributing
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 Terminology
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
<span class="md-ellipsis">
References
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
References
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1-row-by-row-placing-strategy" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Row-by-row placing strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-column-and-diagonal-pruning" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Column and diagonal pruning
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-code-implementation" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Code implementation
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/en/docs/chapter_backtracking/n_queens_problem.md"
title="Edit this page"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="134-n-queens-problem">13.4 &nbsp; n queens problem<a class="headerlink" href="#134-n-queens-problem" title="Permanent link">&para;</a></h1>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>According to the rules of chess, a queen can attack pieces in the same row, column, or on a diagonal line. Given <span class="arithmatex">\(n\)</span> queens and an <span class="arithmatex">\(n \times n\)</span> chessboard, find arrangements where no two queens can attack each other.</p>
</div>
<p>As shown in Figure 13-15, when <span class="arithmatex">\(n = 4\)</span>, there are two solutions. From the perspective of the backtracking algorithm, an <span class="arithmatex">\(n \times n\)</span> chessboard has <span class="arithmatex">\(n^2\)</span> squares, presenting all possible choices <code>choices</code>. The state of the chessboard <code>state</code> changes continuously as each queen is placed.</p>
<p><a class="glightbox" href="../n_queens_problem.assets/solution_4_queens.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Solution to the 4 queens problem" class="animation-figure" src="../n_queens_problem.assets/solution_4_queens.png" /></a></p>
<p align="center"> Figure 13-15 &nbsp; Solution to the 4 queens problem </p>
<p>Figure 13-16 shows the three constraints of this problem: <strong>multiple queens cannot be on the same row, column, or diagonal</strong>. It is important to note that diagonals are divided into the main diagonal <code>\</code> and the secondary diagonal <code>/</code>.</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_constraints.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Constraints of the n queens problem" class="animation-figure" src="../n_queens_problem.assets/n_queens_constraints.png" /></a></p>
<p align="center"> Figure 13-16 &nbsp; Constraints of the n queens problem </p>
<h3 id="1-row-by-row-placing-strategy">1. &nbsp; Row-by-row placing strategy<a class="headerlink" href="#1-row-by-row-placing-strategy" title="Permanent link">&para;</a></h3>
<p>As the number of queens equals the number of rows on the chessboard, both being <span class="arithmatex">\(n\)</span>, it is easy to conclude: <strong>each row on the chessboard allows and only allows one queen to be placed</strong>.</p>
<p>This means that we can adopt a row-by-row placing strategy: starting from the first row, place one queen per row until the last row is reached.</p>
<p>Figure 13-17 shows the row-by-row placing process for the 4 queens problem. Due to space limitations, the figure only expands one search branch of the first row, and prunes any placements that do not meet the column and diagonal constraints.</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_placing.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Row-by-row placing strategy" class="animation-figure" src="../n_queens_problem.assets/n_queens_placing.png" /></a></p>
<p align="center"> Figure 13-17 &nbsp; Row-by-row placing strategy </p>
<p>Essentially, <strong>the row-by-row placing strategy serves as a pruning function</strong>, avoiding all search branches that would place multiple queens in the same row.</p>
<h3 id="2-column-and-diagonal-pruning">2. &nbsp; Column and diagonal pruning<a class="headerlink" href="#2-column-and-diagonal-pruning" title="Permanent link">&para;</a></h3>
<p>To satisfy column constraints, we can use a boolean array <code>cols</code> of length <span class="arithmatex">\(n\)</span> to track whether a queen occupies each column. Before each placement decision, <code>cols</code> is used to prune the columns that already have queens, and it is dynamically updated during backtracking.</p>
<p>How about the diagonal constraints? Let the row and column indices of a cell on the chessboard be <span class="arithmatex">\((row, col)\)</span>. By selecting a specific main diagonal, we notice that the difference <span class="arithmatex">\(row - col\)</span> is the same for all cells on that diagonal, <strong>meaning that <span class="arithmatex">\(row - col\)</span> is a constant value on that diagonal</strong>.</p>
<p>Thus, if two cells satisfy <span class="arithmatex">\(row_1 - col_1 = row_2 - col_2\)</span>, they are definitely on the same main diagonal. Using this pattern, we can utilize the array <code>diags1</code> shown in Figure 13-18 to track whether a queen is on any main diagonal.</p>
<p>Similarly, <strong>the sum <span class="arithmatex">\(row + col\)</span> is a constant value for all cells on a secondary diagonal</strong>. We can also use the array <code>diags2</code> to handle secondary diagonal constraints.</p>
<p><a class="glightbox" href="../n_queens_problem.assets/n_queens_cols_diagonals.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Handling column and diagonal constraints" class="animation-figure" src="../n_queens_problem.assets/n_queens_cols_diagonals.png" /></a></p>
<p align="center"> Figure 13-18 &nbsp; Handling column and diagonal constraints </p>
<h3 id="3-code-implementation">3. &nbsp; Code implementation<a class="headerlink" href="#3-code-implementation" title="Permanent link">&para;</a></h3>
<p>Please note, in an <span class="arithmatex">\(n\)</span>-dimensional matrix, the range of <span class="arithmatex">\(row - col\)</span> is <span class="arithmatex">\([-n + 1, n - 1]\)</span>, and the range of <span class="arithmatex">\(row + col\)</span> is <span class="arithmatex">\([0, 2n - 2]\)</span>, thus the number of both main and secondary diagonals is <span class="arithmatex">\(2n - 1\)</span>, meaning the length of both arrays <code>diags1</code> and <code>diags2</code> is <span class="arithmatex">\(2n - 1\)</span>.</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:14"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><input id="__tabbed_1_13" name="__tabbed_1" type="radio" /><input id="__tabbed_1_14" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Kotlin</label><label for="__tabbed_1_13">Ruby</label><label for="__tabbed_1_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a> <span class="n">row</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="n">state</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="n">cols</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="n">diags1</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="n">diags2</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="p">):</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;回溯算法n 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="c1"># 当放置完所有行时,记录解</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="k">if</span> <span class="n">row</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="nb">list</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">state</span><span class="p">])</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a> <span class="k">return</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a> <span class="c1"># 遍历所有列</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a> <span class="c1"># 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a> <span class="n">diag1</span> <span class="o">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a> <span class="n">diag2</span> <span class="o">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a> <span class="c1"># 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a> <span class="k">if</span> <span class="ow">not</span> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]:</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a> <span class="c1"># 尝试:将皇后放置在该格子</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;Q&quot;</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a> <span class="c1"># 放置下一行</span>
<a id="__codelineno-0-26" name="__codelineno-0-26" href="#__codelineno-0-26"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-0-27" name="__codelineno-0-27" href="#__codelineno-0-27"></a> <span class="c1"># 回退:将该格子恢复为空位</span>
<a id="__codelineno-0-28" name="__codelineno-0-28" href="#__codelineno-0-28"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;#&quot;</span>
<a id="__codelineno-0-29" name="__codelineno-0-29" href="#__codelineno-0-29"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<a id="__codelineno-0-30" name="__codelineno-0-30" href="#__codelineno-0-30"></a>
<a id="__codelineno-0-31" name="__codelineno-0-31" href="#__codelineno-0-31"></a><span class="k">def</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]:</span>
<a id="__codelineno-0-32" name="__codelineno-0-32" href="#__codelineno-0-32"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;求解 n 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-0-33" name="__codelineno-0-33" href="#__codelineno-0-33"></a> <span class="c1"># 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-0-34" name="__codelineno-0-34" href="#__codelineno-0-34"></a> <span class="n">state</span> <span class="o">=</span> <span class="p">[[</span><span class="s2">&quot;#&quot;</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
<a id="__codelineno-0-35" name="__codelineno-0-35" href="#__codelineno-0-35"></a> <span class="n">cols</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="n">n</span> <span class="c1"># 记录列是否有皇后</span>
<a id="__codelineno-0-36" name="__codelineno-0-36" href="#__codelineno-0-36"></a> <span class="n">diags1</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录主对角线上是否有皇后</span>
<a id="__codelineno-0-37" name="__codelineno-0-37" href="#__codelineno-0-37"></a> <span class="n">diags2</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录次对角线上是否有皇后</span>
<a id="__codelineno-0-38" name="__codelineno-0-38" href="#__codelineno-0-38"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-0-39" name="__codelineno-0-39" href="#__codelineno-0-39"></a> <span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-0-40" name="__codelineno-0-40" href="#__codelineno-0-40"></a>
<a id="__codelineno-0-41" name="__codelineno-0-41" href="#__codelineno-0-41"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">state</span><span class="p">);</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-25" name="__codelineno-1-25" href="#__codelineno-1-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-26" name="__codelineno-1-26" href="#__codelineno-1-26"></a><span class="p">}</span>
<a id="__codelineno-1-27" name="__codelineno-1-27" href="#__codelineno-1-27"></a>
<a id="__codelineno-1-28" name="__codelineno-1-28" href="#__codelineno-1-28"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-1-29" name="__codelineno-1-29" href="#__codelineno-1-29"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-30" name="__codelineno-1-30" href="#__codelineno-1-30"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-1-31" name="__codelineno-1-31" href="#__codelineno-1-31"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-1-32" name="__codelineno-1-32" href="#__codelineno-1-32"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-1-33" name="__codelineno-1-33" href="#__codelineno-1-33"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-1-34" name="__codelineno-1-34" href="#__codelineno-1-34"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-1-35" name="__codelineno-1-35" href="#__codelineno-1-35"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-36" name="__codelineno-1-36" href="#__codelineno-1-36"></a>
<a id="__codelineno-1-37" name="__codelineno-1-37" href="#__codelineno-1-37"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-38" name="__codelineno-1-38" href="#__codelineno-1-38"></a>
<a id="__codelineno-1-39" name="__codelineno-1-39" href="#__codelineno-1-39"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-40" name="__codelineno-1-40" href="#__codelineno-1-40"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">);</span>
<a id="__codelineno-2-22" name="__codelineno-2-22" href="#__codelineno-2-22"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-2-23" name="__codelineno-2-23" href="#__codelineno-2-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-2-24" name="__codelineno-2-24" href="#__codelineno-2-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-2-25" name="__codelineno-2-25" href="#__codelineno-2-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-2-26" name="__codelineno-2-26" href="#__codelineno-2-26"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-2-27" name="__codelineno-2-27" href="#__codelineno-2-27"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-2-28" name="__codelineno-2-28" href="#__codelineno-2-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-29" name="__codelineno-2-29" href="#__codelineno-2-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-30" name="__codelineno-2-30" href="#__codelineno-2-30"></a><span class="p">}</span>
<a id="__codelineno-2-31" name="__codelineno-2-31" href="#__codelineno-2-31"></a>
<a id="__codelineno-2-32" name="__codelineno-2-32" href="#__codelineno-2-32"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-2-33" name="__codelineno-2-33" href="#__codelineno-2-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-34" name="__codelineno-2-34" href="#__codelineno-2-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-2-35" name="__codelineno-2-35" href="#__codelineno-2-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-36" name="__codelineno-2-36" href="#__codelineno-2-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-37" name="__codelineno-2-37" href="#__codelineno-2-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-38" name="__codelineno-2-38" href="#__codelineno-2-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-39" name="__codelineno-2-39" href="#__codelineno-2-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-2-40" name="__codelineno-2-40" href="#__codelineno-2-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-41" name="__codelineno-2-41" href="#__codelineno-2-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-2-42" name="__codelineno-2-42" href="#__codelineno-2-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-43" name="__codelineno-2-43" href="#__codelineno-2-43"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-2-44" name="__codelineno-2-44" href="#__codelineno-2-44"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-2-45" name="__codelineno-2-45" href="#__codelineno-2-45"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-2-46" name="__codelineno-2-46" href="#__codelineno-2-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-2-47" name="__codelineno-2-47" href="#__codelineno-2-47"></a>
<a id="__codelineno-2-48" name="__codelineno-2-48" href="#__codelineno-2-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-2-49" name="__codelineno-2-49" href="#__codelineno-2-49"></a>
<a id="__codelineno-2-50" name="__codelineno-2-50" href="#__codelineno-2-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-2-51" name="__codelineno-2-51" href="#__codelineno-2-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">true</span><span class="p">;</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="n">Backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">false</span><span class="p">;</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="p">}</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a>
<a id="__codelineno-3-32" name="__codelineno-3-32" href="#__codelineno-3-32"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-3-33" name="__codelineno-3-33" href="#__codelineno-3-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">NQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-34" name="__codelineno-3-34" href="#__codelineno-3-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-3-35" name="__codelineno-3-35" href="#__codelineno-3-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-36" name="__codelineno-3-36" href="#__codelineno-3-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-37" name="__codelineno-3-37" href="#__codelineno-3-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-38" name="__codelineno-3-38" href="#__codelineno-3-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-39" name="__codelineno-3-39" href="#__codelineno-3-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-3-40" name="__codelineno-3-40" href="#__codelineno-3-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-41" name="__codelineno-3-41" href="#__codelineno-3-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-3-42" name="__codelineno-3-42" href="#__codelineno-3-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-43" name="__codelineno-3-43" href="#__codelineno-3-43"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-3-44" name="__codelineno-3-44" href="#__codelineno-3-44"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-3-45" name="__codelineno-3-45" href="#__codelineno-3-45"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-3-46" name="__codelineno-3-46" href="#__codelineno-3-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-3-47" name="__codelineno-3-47" href="#__codelineno-3-47"></a>
<a id="__codelineno-3-48" name="__codelineno-3-48" href="#__codelineno-3-48"></a><span class="w"> </span><span class="n">Backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-3-49" name="__codelineno-3-49" href="#__codelineno-3-49"></a>
<a id="__codelineno-3-50" name="__codelineno-3-50" href="#__codelineno-3-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-3-51" name="__codelineno-3-51" href="#__codelineno-3-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="p">!(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="p">}</span>
<a id="__codelineno-4-31" name="__codelineno-4-31" href="#__codelineno-4-31"></a>
<a id="__codelineno-4-32" name="__codelineno-4-32" href="#__codelineno-4-32"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-4-33" name="__codelineno-4-33" href="#__codelineno-4-33"></a><span class="kd">func</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[][][]</span><span class="kt">string</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-34" name="__codelineno-4-34" href="#__codelineno-4-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-4-35" name="__codelineno-4-35" href="#__codelineno-4-35"></a><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-36" name="__codelineno-4-36" href="#__codelineno-4-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-37" name="__codelineno-4-37" href="#__codelineno-4-37"></a><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-38" name="__codelineno-4-38" href="#__codelineno-4-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-39" name="__codelineno-4-39" href="#__codelineno-4-39"></a><span class="w"> </span><span class="nx">row</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-4-40" name="__codelineno-4-40" href="#__codelineno-4-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-41" name="__codelineno-4-41" href="#__codelineno-4-41"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">row</span>
<a id="__codelineno-4-42" name="__codelineno-4-42" href="#__codelineno-4-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-43" name="__codelineno-4-43" href="#__codelineno-4-43"></a><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-4-44" name="__codelineno-4-44" href="#__codelineno-4-44"></a><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-4-45" name="__codelineno-4-45" href="#__codelineno-4-45"></a><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-4-46" name="__codelineno-4-46" href="#__codelineno-4-46"></a><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-4-47" name="__codelineno-4-47" href="#__codelineno-4-47"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-4-48" name="__codelineno-4-48" href="#__codelineno-4-48"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-4-49" name="__codelineno-4-49" href="#__codelineno-4-49"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-4-50" name="__codelineno-4-50" href="#__codelineno-4-50"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[</span><span class="nb">String</span><span class="p">]],</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]],</span> <span class="n">cols</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags1</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags2</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="k">if</span> <span class="n">row</span> <span class="p">==</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="k">return</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="p">}</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="c1">// 遍历所有列</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="k">for</span> <span class="n">col</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a> <span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a> <span class="kd">let</span> <span class="nv">diag1</span> <span class="p">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a> <span class="kd">let</span> <span class="nv">diag2</span> <span class="p">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a> <span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a> <span class="k">if</span> <span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a> <span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;Q&quot;</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a> <span class="c1">// 放置下一行</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a> <span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;#&quot;</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a> <span class="p">}</span>
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a> <span class="p">}</span>
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="p">}</span>
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a>
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="kd">func</span> <span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">{</span>
<a id="__codelineno-5-33" name="__codelineno-5-33" href="#__codelineno-5-33"></a> <span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-5-34" name="__codelineno-5-34" href="#__codelineno-5-34"></a> <span class="kd">var</span> <span class="nv">state</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="s">&quot;#&quot;</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-5-35" name="__codelineno-5-35" href="#__codelineno-5-35"></a> <span class="kd">var</span> <span class="nv">cols</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span> <span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-5-36" name="__codelineno-5-36" href="#__codelineno-5-36"></a> <span class="kd">var</span> <span class="nv">diags1</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-5-37" name="__codelineno-5-37" href="#__codelineno-5-37"></a> <span class="kd">var</span> <span class="nv">diags2</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-5-38" name="__codelineno-5-38" href="#__codelineno-5-38"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-5-39" name="__codelineno-5-39" href="#__codelineno-5-39"></a>
<a id="__codelineno-5-40" name="__codelineno-5-40" href="#__codelineno-5-40"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-5-41" name="__codelineno-5-41" href="#__codelineno-5-41"></a>
<a id="__codelineno-5-42" name="__codelineno-5-42" href="#__codelineno-5-42"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-5-43" name="__codelineno-5-43" href="#__codelineno-5-43"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-6-16" name="__codelineno-6-16" href="#__codelineno-6-16"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-6-17" name="__codelineno-6-17" href="#__codelineno-6-17"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-6-18" name="__codelineno-6-18" href="#__codelineno-6-18"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-6-19" name="__codelineno-6-19" href="#__codelineno-6-19"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-6-20" name="__codelineno-6-20" href="#__codelineno-6-20"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-6-21" name="__codelineno-6-21" href="#__codelineno-6-21"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-6-22" name="__codelineno-6-22" href="#__codelineno-6-22"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-6-23" name="__codelineno-6-23" href="#__codelineno-6-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-24" name="__codelineno-6-24" href="#__codelineno-6-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-25" name="__codelineno-6-25" href="#__codelineno-6-25"></a><span class="p">}</span>
<a id="__codelineno-6-26" name="__codelineno-6-26" href="#__codelineno-6-26"></a>
<a id="__codelineno-6-27" name="__codelineno-6-27" href="#__codelineno-6-27"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-6-28" name="__codelineno-6-28" href="#__codelineno-6-28"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-29" name="__codelineno-6-29" href="#__codelineno-6-29"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-6-30" name="__codelineno-6-30" href="#__codelineno-6-30"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-6-31" name="__codelineno-6-31" href="#__codelineno-6-31"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-6-32" name="__codelineno-6-32" href="#__codelineno-6-32"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-6-33" name="__codelineno-6-33" href="#__codelineno-6-33"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-6-34" name="__codelineno-6-34" href="#__codelineno-6-34"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-6-35" name="__codelineno-6-35" href="#__codelineno-6-35"></a>
<a id="__codelineno-6-36" name="__codelineno-6-36" href="#__codelineno-6-36"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-6-37" name="__codelineno-6-37" href="#__codelineno-6-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-6-38" name="__codelineno-6-38" href="#__codelineno-6-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="nx">row</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="nx">state</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][],</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][],</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="nx">cols</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="nx">diags1</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="nx">diags2</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[]</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-7-27" name="__codelineno-7-27" href="#__codelineno-7-27"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-7-28" name="__codelineno-7-28" href="#__codelineno-7-28"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-7-29" name="__codelineno-7-29" href="#__codelineno-7-29"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-7-30" name="__codelineno-7-30" href="#__codelineno-7-30"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-7-31" name="__codelineno-7-31" href="#__codelineno-7-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-32" name="__codelineno-7-32" href="#__codelineno-7-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-33" name="__codelineno-7-33" href="#__codelineno-7-33"></a><span class="p">}</span>
<a id="__codelineno-7-34" name="__codelineno-7-34" href="#__codelineno-7-34"></a>
<a id="__codelineno-7-35" name="__codelineno-7-35" href="#__codelineno-7-35"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-7-36" name="__codelineno-7-36" href="#__codelineno-7-36"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-37" name="__codelineno-7-37" href="#__codelineno-7-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-7-38" name="__codelineno-7-38" href="#__codelineno-7-38"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-7-39" name="__codelineno-7-39" href="#__codelineno-7-39"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-7-40" name="__codelineno-7-40" href="#__codelineno-7-40"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-7-41" name="__codelineno-7-41" href="#__codelineno-7-41"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-7-42" name="__codelineno-7-42" href="#__codelineno-7-42"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-7-43" name="__codelineno-7-43" href="#__codelineno-7-43"></a>
<a id="__codelineno-7-44" name="__codelineno-7-44" href="#__codelineno-7-44"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-7-45" name="__codelineno-7-45" href="#__codelineno-7-45"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-7-46" name="__codelineno-7-46" href="#__codelineno-7-46"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">,</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">List</span><span class="p">.</span><span class="n">from</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-8-26" name="__codelineno-8-26" href="#__codelineno-8-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-27" name="__codelineno-8-27" href="#__codelineno-8-27"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-8-28" name="__codelineno-8-28" href="#__codelineno-8-28"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-8-29" name="__codelineno-8-29" href="#__codelineno-8-29"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-30" name="__codelineno-8-30" href="#__codelineno-8-30"></a><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-31" name="__codelineno-8-31" href="#__codelineno-8-31"></a><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-8-32" name="__codelineno-8-32" href="#__codelineno-8-32"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-8-33" name="__codelineno-8-33" href="#__codelineno-8-33"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-8-34" name="__codelineno-8-34" href="#__codelineno-8-34"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-8-35" name="__codelineno-8-35" href="#__codelineno-8-35"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-8-36" name="__codelineno-8-36" href="#__codelineno-8-36"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-37" name="__codelineno-8-37" href="#__codelineno-8-37"></a><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-38" name="__codelineno-8-38" href="#__codelineno-8-38"></a><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-8-39" name="__codelineno-8-39" href="#__codelineno-8-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-40" name="__codelineno-8-40" href="#__codelineno-8-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-41" name="__codelineno-8-41" href="#__codelineno-8-41"></a><span class="p">}</span>
<a id="__codelineno-8-42" name="__codelineno-8-42" href="#__codelineno-8-42"></a>
<a id="__codelineno-8-43" name="__codelineno-8-43" href="#__codelineno-8-43"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-8-44" name="__codelineno-8-44" href="#__codelineno-8-44"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-45" name="__codelineno-8-45" href="#__codelineno-8-45"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-8-46" name="__codelineno-8-46" href="#__codelineno-8-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">generate</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="n">index</span><span class="p">)</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s2">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-8-47" name="__codelineno-8-47" href="#__codelineno-8-47"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-8-48" name="__codelineno-8-48" href="#__codelineno-8-48"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-8-49" name="__codelineno-8-49" href="#__codelineno-8-49"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-8-50" name="__codelineno-8-50" href="#__codelineno-8-50"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-8-51" name="__codelineno-8-51" href="#__codelineno-8-51"></a>
<a id="__codelineno-8-52" name="__codelineno-8-52" href="#__codelineno-8-52"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-8-53" name="__codelineno-8-53" href="#__codelineno-8-53"></a>
<a id="__codelineno-8-54" name="__codelineno-8-54" href="#__codelineno-8-54"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-8-55" name="__codelineno-8-55" href="#__codelineno-8-55"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="n">row</span>: <span class="kt">usize</span><span class="p">,</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="n">n</span>: <span class="kt">usize</span><span class="p">,</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="n">state</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="n">res</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="n">cols</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="n">diags1</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="n">diags2</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">bool</span><span class="p">],</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">copy_state</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Vec</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">s_row</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">clone</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="n">copy_state</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">s_row</span><span class="p">);</span>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-17" name="__codelineno-9-17" href="#__codelineno-9-17"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">copy_state</span><span class="p">);</span>
<a id="__codelineno-9-18" name="__codelineno-9-18" href="#__codelineno-9-18"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-9-19" name="__codelineno-9-19" href="#__codelineno-9-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-20" name="__codelineno-9-20" href="#__codelineno-9-20"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-9-21" name="__codelineno-9-21" href="#__codelineno-9-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-22" name="__codelineno-9-22" href="#__codelineno-9-22"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-9-23" name="__codelineno-9-23" href="#__codelineno-9-23"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-9-24" name="__codelineno-9-24" href="#__codelineno-9-24"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-9-25" name="__codelineno-9-25" href="#__codelineno-9-25"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-9-26" name="__codelineno-9-26" href="#__codelineno-9-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-27" name="__codelineno-9-27" href="#__codelineno-9-27"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-9-28" name="__codelineno-9-28" href="#__codelineno-9-28"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">get_mut</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="n">unwrap</span><span class="p">()[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">.</span><span class="n">into</span><span class="p">();</span>
<a id="__codelineno-9-29" name="__codelineno-9-29" href="#__codelineno-9-29"></a><span class="w"> </span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">],</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">],</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">);</span>
<a id="__codelineno-9-30" name="__codelineno-9-30" href="#__codelineno-9-30"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-9-31" name="__codelineno-9-31" href="#__codelineno-9-31"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-9-32" name="__codelineno-9-32" href="#__codelineno-9-32"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-9-33" name="__codelineno-9-33" href="#__codelineno-9-33"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">get_mut</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="n">unwrap</span><span class="p">()[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">.</span><span class="n">into</span><span class="p">();</span>
<a id="__codelineno-9-34" name="__codelineno-9-34" href="#__codelineno-9-34"></a><span class="w"> </span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">],</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">],</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">);</span>
<a id="__codelineno-9-35" name="__codelineno-9-35" href="#__codelineno-9-35"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-36" name="__codelineno-9-36" href="#__codelineno-9-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-37" name="__codelineno-9-37" href="#__codelineno-9-37"></a><span class="p">}</span>
<a id="__codelineno-9-38" name="__codelineno-9-38" href="#__codelineno-9-38"></a>
<a id="__codelineno-9-39" name="__codelineno-9-39" href="#__codelineno-9-39"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-9-40" name="__codelineno-9-40" href="#__codelineno-9-40"></a><span class="k">fn</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span>: <span class="kt">usize</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-41" name="__codelineno-9-41" href="#__codelineno-9-41"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-9-42" name="__codelineno-9-42" href="#__codelineno-9-42"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">state</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Vec</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-43" name="__codelineno-9-43" href="#__codelineno-9-43"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-44" name="__codelineno-9-44" href="#__codelineno-9-44"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">row</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Vec</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-45" name="__codelineno-9-45" href="#__codelineno-9-45"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-46" name="__codelineno-9-46" href="#__codelineno-9-46"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">.</span><span class="n">into</span><span class="p">());</span>
<a id="__codelineno-9-47" name="__codelineno-9-47" href="#__codelineno-9-47"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-48" name="__codelineno-9-48" href="#__codelineno-9-48"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-9-49" name="__codelineno-9-49" href="#__codelineno-9-49"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-50" name="__codelineno-9-50" href="#__codelineno-9-50"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-9-51" name="__codelineno-9-51" href="#__codelineno-9-51"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-9-52" name="__codelineno-9-52" href="#__codelineno-9-52"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="kc">false</span><span class="p">;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-9-53" name="__codelineno-9-53" href="#__codelineno-9-53"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">res</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Vec</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-54" name="__codelineno-9-54" href="#__codelineno-9-54"></a>
<a id="__codelineno-9-55" name="__codelineno-9-55" href="#__codelineno-9-55"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span>
<a id="__codelineno-9-56" name="__codelineno-9-56" href="#__codelineno-9-56"></a><span class="w"> </span><span class="mi">0</span><span class="p">,</span>
<a id="__codelineno-9-57" name="__codelineno-9-57" href="#__codelineno-9-57"></a><span class="w"> </span><span class="n">n</span><span class="p">,</span>
<a id="__codelineno-9-58" name="__codelineno-9-58" href="#__codelineno-9-58"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">state</span><span class="p">,</span>
<a id="__codelineno-9-59" name="__codelineno-9-59" href="#__codelineno-9-59"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-9-60" name="__codelineno-9-60" href="#__codelineno-9-60"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-9-61" name="__codelineno-9-61" href="#__codelineno-9-61"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span>
<a id="__codelineno-9-62" name="__codelineno-9-62" href="#__codelineno-9-62"></a><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">diags2</span><span class="p">,</span>
<a id="__codelineno-9-63" name="__codelineno-9-63" href="#__codelineno-9-63"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-9-64" name="__codelineno-9-64" href="#__codelineno-9-64"></a>
<a id="__codelineno-9-65" name="__codelineno-9-65" href="#__codelineno-9-65"></a><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-9-66" name="__codelineno-9-66" href="#__codelineno-9-66"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">][</span><span class="n">MAX_SIZE</span><span class="p">],</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">resSize</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">],</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">][</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">));</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="n">strcpy</span><span class="p">(</span><span class="n">res</span><span class="p">[</span><span class="o">*</span><span class="n">resSize</span><span class="p">][</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">resSize</span><span class="p">)</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-10-17" name="__codelineno-10-17" href="#__codelineno-10-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-10-18" name="__codelineno-10-18" href="#__codelineno-10-18"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-10-19" name="__codelineno-10-19" href="#__codelineno-10-19"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-10-20" name="__codelineno-10-20" href="#__codelineno-10-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-21" name="__codelineno-10-21" href="#__codelineno-10-21"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-10-22" name="__codelineno-10-22" href="#__codelineno-10-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-10-23" name="__codelineno-10-23" href="#__codelineno-10-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-10-24" name="__codelineno-10-24" href="#__codelineno-10-24"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-10-25" name="__codelineno-10-25" href="#__codelineno-10-25"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">resSize</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-10-26" name="__codelineno-10-26" href="#__codelineno-10-26"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-10-27" name="__codelineno-10-27" href="#__codelineno-10-27"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-10-28" name="__codelineno-10-28" href="#__codelineno-10-28"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-10-29" name="__codelineno-10-29" href="#__codelineno-10-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-30" name="__codelineno-10-30" href="#__codelineno-10-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-31" name="__codelineno-10-31" href="#__codelineno-10-31"></a><span class="p">}</span>
<a id="__codelineno-10-32" name="__codelineno-10-32" href="#__codelineno-10-32"></a>
<a id="__codelineno-10-33" name="__codelineno-10-33" href="#__codelineno-10-33"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-10-34" name="__codelineno-10-34" href="#__codelineno-10-34"></a><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">returnSize</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-35" name="__codelineno-10-35" href="#__codelineno-10-35"></a><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">][</span><span class="n">MAX_SIZE</span><span class="p">];</span>
<a id="__codelineno-10-36" name="__codelineno-10-36" href="#__codelineno-10-36"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-10-37" name="__codelineno-10-37" href="#__codelineno-10-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-38" name="__codelineno-10-38" href="#__codelineno-10-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-39" name="__codelineno-10-39" href="#__codelineno-10-39"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-10-40" name="__codelineno-10-40" href="#__codelineno-10-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-41" name="__codelineno-10-41" href="#__codelineno-10-41"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">n</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="sc">&#39;\0&#39;</span><span class="p">;</span>
<a id="__codelineno-10-42" name="__codelineno-10-42" href="#__codelineno-10-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-43" name="__codelineno-10-43" href="#__codelineno-10-43"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">MAX_SIZE</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-10-44" name="__codelineno-10-44" href="#__codelineno-10-44"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-10-45" name="__codelineno-10-45" href="#__codelineno-10-45"></a><span class="w"> </span><span class="kt">bool</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="nb">false</span><span class="p">};</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-10-46" name="__codelineno-10-46" href="#__codelineno-10-46"></a>
<a id="__codelineno-10-47" name="__codelineno-10-47" href="#__codelineno-10-47"></a><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">***</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">MAX_SIZE</span><span class="p">);</span>
<a id="__codelineno-10-48" name="__codelineno-10-48" href="#__codelineno-10-48"></a><span class="w"> </span><span class="o">*</span><span class="n">returnSize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-10-49" name="__codelineno-10-49" href="#__codelineno-10-49"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">returnSize</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-10-50" name="__codelineno-10-50" href="#__codelineno-10-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-51" name="__codelineno-10-51" href="#__codelineno-10-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 回溯算法n 皇后 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="n">row</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="n">n</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="n">state</span><span class="p">:</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="n">res</span><span class="p">:</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="p">,</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="n">cols</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">,</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">diags1</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">,</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="n">diags2</span><span class="p">:</span><span class="w"> </span><span class="n">BooleanArray</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">()</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">sRow</span><span class="p">.</span><span class="na">toMutableList</span><span class="p">())</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">)</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="k">return</span>
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">col</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-22" name="__codelineno-11-22" href="#__codelineno-11-22"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和次对角线</span>
<a id="__codelineno-11-23" name="__codelineno-11-23" href="#__codelineno-11-23"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span>
<a id="__codelineno-11-24" name="__codelineno-11-24" href="#__codelineno-11-24"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span>
<a id="__codelineno-11-25" name="__codelineno-11-25" href="#__codelineno-11-25"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后</span>
<a id="__codelineno-11-26" name="__codelineno-11-26" href="#__codelineno-11-26"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="o">!</span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-27" name="__codelineno-11-27" href="#__codelineno-11-27"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-11-28" name="__codelineno-11-28" href="#__codelineno-11-28"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-11-29" name="__codelineno-11-29" href="#__codelineno-11-29"></a><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-11-30" name="__codelineno-11-30" href="#__codelineno-11-30"></a><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span>
<a id="__codelineno-11-31" name="__codelineno-11-31" href="#__codelineno-11-31"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span>
<a id="__codelineno-11-32" name="__codelineno-11-32" href="#__codelineno-11-32"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-11-33" name="__codelineno-11-33" href="#__codelineno-11-33"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-11-34" name="__codelineno-11-34" href="#__codelineno-11-34"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-11-35" name="__codelineno-11-35" href="#__codelineno-11-35"></a><span class="w"> </span><span class="n">state</span><span class="o">[</span><span class="n">row</span><span class="o">][</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-11-36" name="__codelineno-11-36" href="#__codelineno-11-36"></a><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-11-37" name="__codelineno-11-37" href="#__codelineno-11-37"></a><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span>
<a id="__codelineno-11-38" name="__codelineno-11-38" href="#__codelineno-11-38"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span>
<a id="__codelineno-11-39" name="__codelineno-11-39" href="#__codelineno-11-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-40" name="__codelineno-11-40" href="#__codelineno-11-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-41" name="__codelineno-11-41" href="#__codelineno-11-41"></a><span class="p">}</span>
<a id="__codelineno-11-42" name="__codelineno-11-42" href="#__codelineno-11-42"></a>
<a id="__codelineno-11-43" name="__codelineno-11-43" href="#__codelineno-11-43"></a><span class="cm">/* 求解 n 皇后 */</span>
<a id="__codelineno-11-44" name="__codelineno-11-44" href="#__codelineno-11-44"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-45" name="__codelineno-11-45" href="#__codelineno-11-45"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-11-46" name="__codelineno-11-46" href="#__codelineno-11-46"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;</span><span class="p">()</span>
<a id="__codelineno-11-47" name="__codelineno-11-47" href="#__codelineno-11-47"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-48" name="__codelineno-11-48" href="#__codelineno-11-48"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;</span><span class="p">()</span>
<a id="__codelineno-11-49" name="__codelineno-11-49" href="#__codelineno-11-49"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-50" name="__codelineno-11-50" href="#__codelineno-11-50"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">)</span>
<a id="__codelineno-11-51" name="__codelineno-11-51" href="#__codelineno-11-51"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-52" name="__codelineno-11-52" href="#__codelineno-11-52"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">)</span>
<a id="__codelineno-11-53" name="__codelineno-11-53" href="#__codelineno-11-53"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-54" name="__codelineno-11-54" href="#__codelineno-11-54"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-11-55" name="__codelineno-11-55" href="#__codelineno-11-55"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="c1">// 记录主对角线上是否有皇后</span>
<a id="__codelineno-11-56" name="__codelineno-11-56" href="#__codelineno-11-56"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BooleanArray</span><span class="p">(</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="c1">// 记录次对角线上是否有皇后</span>
<a id="__codelineno-11-57" name="__codelineno-11-57" href="#__codelineno-11-57"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">mutableListOf</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="n">MutableList</span><span class="o">&lt;</span><span class="kt">String</span><span class="o">&gt;&gt;?&gt;</span><span class="p">()</span>
<a id="__codelineno-11-58" name="__codelineno-11-58" href="#__codelineno-11-58"></a>
<a id="__codelineno-11-59" name="__codelineno-11-59" href="#__codelineno-11-59"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-11-60" name="__codelineno-11-60" href="#__codelineno-11-60"></a>
<a id="__codelineno-11-61" name="__codelineno-11-61" href="#__codelineno-11-61"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-11-62" name="__codelineno-11-62" href="#__codelineno-11-62"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">n_queens</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>Code Visualization</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int,%0A%20%20%20%20n%3A%20int,%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D,%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D,%0A%20%20%20%20cols%3A%20list%5Bbool%5D,%0A%20%20%20%20diags1%3A%20list%5Bbool%5D,%0A%20%20%20%20diags2%3A%20list%5Bbool%5D,%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%BD%93%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%97%B6%EF%BC%8C%E8%AE%B0%E5%BD%95%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E9%81%8D%E5%8E%86%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E8%AF%A5%E6%A0%BC%E5%AD%90%E5%AF%B9%E5%BA%94%E7%9A%84%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E5%92%8C%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%AE%B8%E8%AF%A5%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E3%80%81%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%B0%9D%E8%AF%95%EF%BC%9A%E5%B0%86%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%AF%A5%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201,%20n,%20state,%20res,%20cols,%20diags1,%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%86%E8%AF%A5%E6%A0%BC%E5%AD%90%E6%81%A2%E5%A4%8D%E4%B8%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n*n%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%98%EF%BC%8C%E5%85%B6%E4%B8%AD%20'Q'%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C'%23'%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20*%20n%20%20%23%20%E8%AE%B0%E5%BD%95%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20*%20%282%20*%20n%20-%201%29%20%20%23%20%E8%AE%B0%E5%BD%95%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20*%20%282%20*%20n%20-%201%29%20%20%23%20%E8%AE%B0%E5%BD%95%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280,%20n,%20state,%20res,%20cols,%20diags1,%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A3%8B%E7%9B%98%E9%95%BF%E5%AE%BD%E4%B8%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E6%96%B9%E6%A1%88%E5%85%B1%E6%9C%89%20%7Blen%28res%29%7D%20%E7%A7%8D%22%29%0A%20%20%20%20for%20state%20in%20res%3A%0A%20%20%20%20%20%20%20%20print%28%22--------------------%22%29%0A%20%20%20%20%20%20%20%20for%20row%20in%20state%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28row%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=61&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20row%3A%20int,%0A%20%20%20%20n%3A%20int,%0A%20%20%20%20state%3A%20list%5Blist%5Bstr%5D%5D,%0A%20%20%20%20res%3A%20list%5Blist%5Blist%5Bstr%5D%5D%5D,%0A%20%20%20%20cols%3A%20list%5Bbool%5D,%0A%20%20%20%20diags1%3A%20list%5Bbool%5D,%0A%20%20%20%20diags2%3A%20list%5Bbool%5D,%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E7%AE%97%E6%B3%95%EF%BC%9AN%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%BD%93%E6%94%BE%E7%BD%AE%E5%AE%8C%E6%89%80%E6%9C%89%E8%A1%8C%E6%97%B6%EF%BC%8C%E8%AE%B0%E5%BD%95%E8%A7%A3%0A%20%20%20%20if%20row%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res.append%28%5Blist%28row%29%20for%20row%20in%20state%5D%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E9%81%8D%E5%8E%86%E6%89%80%E6%9C%89%E5%88%97%0A%20%20%20%20for%20col%20in%20range%28n%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E8%AF%A5%E6%A0%BC%E5%AD%90%E5%AF%B9%E5%BA%94%E7%9A%84%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E5%92%8C%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%0A%20%20%20%20%20%20%20%20diag1%20%3D%20row%20-%20col%20%2B%20n%20-%201%0A%20%20%20%20%20%20%20%20diag2%20%3D%20row%20%2B%20col%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%AE%B8%E8%AF%A5%E6%A0%BC%E5%AD%90%E6%89%80%E5%9C%A8%E5%88%97%E3%80%81%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E3%80%81%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E5%AD%98%E5%9C%A8%E7%9A%87%E5%90%8E%0A%20%20%20%20%20%20%20%20if%20not%20cols%5Bcol%5D%20and%20not%20diags1%5Bdiag1%5D%20and%20not%20diags2%5Bdiag2%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%B0%9D%E8%AF%95%EF%BC%9A%E5%B0%86%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E5%9C%A8%E8%AF%A5%E6%A0%BC%E5%AD%90%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22Q%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%94%BE%E7%BD%AE%E4%B8%8B%E4%B8%80%E8%A1%8C%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28row%20%2B%201,%20n,%20state,%20res,%20cols,%20diags1,%20diags2%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E5%B0%86%E8%AF%A5%E6%A0%BC%E5%AD%90%E6%81%A2%E5%A4%8D%E4%B8%BA%E7%A9%BA%E4%BD%8D%0A%20%20%20%20%20%20%20%20%20%20%20%20state%5Brow%5D%5Bcol%5D%20%3D%20%22%23%22%0A%20%20%20%20%20%20%20%20%20%20%20%20cols%5Bcol%5D%20%3D%20diags1%5Bdiag1%5D%20%3D%20diags2%5Bdiag2%5D%20%3D%20False%0A%0A%0Adef%20n_queens%28n%3A%20int%29%20-%3E%20list%5Blist%5Blist%5Bstr%5D%5D%5D%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%20N%20%E7%9A%87%E5%90%8E%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20n*n%20%E5%A4%A7%E5%B0%8F%E7%9A%84%E6%A3%8B%E7%9B%98%EF%BC%8C%E5%85%B6%E4%B8%AD%20'Q'%20%E4%BB%A3%E8%A1%A8%E7%9A%87%E5%90%8E%EF%BC%8C'%23'%20%E4%BB%A3%E8%A1%A8%E7%A9%BA%E4%BD%8D%0A%20%20%20%20state%20%3D%20%5B%5B%22%23%22%20for%20_%20in%20range%28n%29%5D%20for%20_%20in%20range%28n%29%5D%0A%20%20%20%20cols%20%3D%20%5BFalse%5D%20*%20n%20%20%23%20%E8%AE%B0%E5%BD%95%E5%88%97%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags1%20%3D%20%5BFalse%5D%20*%20%282%20*%20n%20-%201%29%20%20%23%20%E8%AE%B0%E5%BD%95%E4%B8%BB%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20diags2%20%3D%20%5BFalse%5D%20*%20%282%20*%20n%20-%201%29%20%20%23%20%E8%AE%B0%E5%BD%95%E6%AC%A1%E5%AF%B9%E8%A7%92%E7%BA%BF%E4%B8%8A%E6%98%AF%E5%90%A6%E6%9C%89%E7%9A%87%E5%90%8E%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%280,%20n,%20state,%20res,%20cols,%20diags1,%20diags2%29%0A%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%20%20%20%20res%20%3D%20n_queens%28n%29%0A%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A3%8B%E7%9B%98%E9%95%BF%E5%AE%BD%E4%B8%BA%20%7Bn%7D%22%29%0A%20%20%20%20print%28f%22%E7%9A%87%E5%90%8E%E6%94%BE%E7%BD%AE%E6%96%B9%E6%A1%88%E5%85%B1%E6%9C%89%20%7Blen%28res%29%7D%20%E7%A7%8D%22%29%0A%20%20%20%20for%20state%20in%20res%3A%0A%20%20%20%20%20%20%20%20print%28%22--------------------%22%29%0A%20%20%20%20%20%20%20%20for%20row%20in%20state%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20print%28row%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=61&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen &gt;</a></div></p>
</details>
<p>Placing <span class="arithmatex">\(n\)</span> queens row-by-row, considering column constraints, from the first row to the last row there are <span class="arithmatex">\(n\)</span>, <span class="arithmatex">\(n-1\)</span>, <span class="arithmatex">\(\dots\)</span>, <span class="arithmatex">\(2\)</span>, <span class="arithmatex">\(1\)</span> choices, using <span class="arithmatex">\(O(n!)\)</span> time. When recording a solution, it is necessary to copy the matrix <code>state</code> and add it to <code>res</code>, with the copying operation using <span class="arithmatex">\(O(n^2)\)</span> time. Therefore, <strong>the overall time complexity is <span class="arithmatex">\(O(n! \cdot n^2)\)</span></strong>. In practice, pruning based on diagonal constraints can significantly reduce the search space, thus often the search efficiency is better than the above time complexity.</p>
<p>Array <code>state</code> uses <span class="arithmatex">\(O(n^2)\)</span> space, and arrays <code>cols</code>, <code>diags1</code>, and <code>diags2</code> each use <span class="arithmatex">\(O(n)\)</span> space. The maximum recursion depth is <span class="arithmatex">\(n\)</span>, using <span class="arithmatex">\(O(n)\)</span> stack space. Therefore, <strong>the space complexity is <span class="arithmatex">\(O(n^2)\)</span></strong>.</p>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="Footer"
>
<!-- Link to previous page -->
<a
href="../subset_sum_problem/"
class="md-footer__link md-footer__link--prev"
aria-label="Previous: 13.3 Subset sum problem"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
13.3 Subset sum problem
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../summary/"
class="md-footer__link md-footer__link--next"
aria-label="Next: 13.5 Summary"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
13.5 Summary
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments">Feel free to drop your insights, questions or suggestions</h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="en"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
Back to top
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="Footer" >
<a href="../subset_sum_problem/" class="md-footer__link md-footer__link--prev" aria-label="Previous: 13.3 Subset sum problem">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
13.3 Subset sum problem
</div>
</div>
</a>
<a href="../summary/" class="md-footer__link md-footer__link--next" aria-label="Next: 13.5 Summary">
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
13.5 Summary
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>