You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_graph/graph_traversal/index.html

4478 lines
260 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_graph/graph_traversal/">
<link rel="prev" href="../graph_operations/">
<link rel="next" href="../summary/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.2.0-b0">
<title>9.3   图的遍历 - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.0c456da8.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.ecc896b0.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#93" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
9.3 &nbsp; 图的遍历
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
第 0 章 &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
第 0 章 &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 &nbsp; 关于本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 &nbsp; 如何使用本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
第 1 章 &nbsp; 初识算法
</span>
</a>
<label class="md-nav__link " for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
第 1 章 &nbsp; 初识算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 &nbsp; 算法无处不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 &nbsp; 算法是什么
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度
</span>
</a>
<label class="md-nav__link " for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 &nbsp; 算法效率评估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.2 &nbsp; 时间复杂度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 &nbsp; 空间复杂度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
第 3 章 &nbsp; 数据结构
</span>
</a>
<label class="md-nav__link " for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
第 3 章 &nbsp; 数据结构
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 &nbsp; 数据结构分类
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 &nbsp; 基本数据类型
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 &nbsp; 数字编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 &nbsp; 字符编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
第 4 章 &nbsp; 数组与链表
</span>
</a>
<label class="md-nav__link " for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
第 4 章 &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 &nbsp; 数组
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 &nbsp; 链表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 &nbsp; 列表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
第 5 章 &nbsp; 栈与队列
</span>
</a>
<label class="md-nav__link " for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
第 5 章 &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 &nbsp; 队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 &nbsp; 双向队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 散列表
</span>
</a>
<label class="md-nav__link " for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 &nbsp; 哈希表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 &nbsp; 哈希冲突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 &nbsp; 哈希算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
第 7 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
第 7 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 &nbsp; 二叉树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 &nbsp; 二叉树遍历
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 &nbsp; 二叉树数组表示
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 &nbsp; 二叉搜索树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 &nbsp; AVL 树 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
第 8 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
第 8 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 &nbsp; 建堆操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 &nbsp; Top-K 问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
第 9 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
第 9 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 &nbsp; 图基础操作
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
9.3 &nbsp; 图的遍历
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
9.3 &nbsp; 图的遍历
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#931" class="md-nav__link">
9.3.1 &nbsp; 广度优先遍历
</a>
<nav class="md-nav" aria-label="9.3.1   广度优先遍历">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. &nbsp; 算法实现
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#932" class="md-nav__link">
9.3.2 &nbsp; 深度优先遍历
</a>
<nav class="md-nav" aria-label="9.3.2   深度优先遍历">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1_1" class="md-nav__link">
1. &nbsp; 算法实现
</a>
</li>
<li class="md-nav__item">
<a href="#2_1" class="md-nav__link">
2. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
第 10 章 &nbsp; 搜索
</span>
</a>
<label class="md-nav__link " for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
第 10 章 &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 &nbsp; 二分查找
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 &nbsp; 二分查找插入点
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 &nbsp; 二分查找边界
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 &nbsp; 哈希优化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 &nbsp; 重识搜索算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
第 11 章 &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
第 11 章 &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 &nbsp; 排序算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 &nbsp; 选择排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 &nbsp; 冒泡排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 &nbsp; 归并排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 &nbsp; 堆排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 &nbsp; 计数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 &nbsp; 基数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
第 12 章 &nbsp; 分治
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
<label class="md-nav__link " for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
第 12 章 &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 &nbsp; 分治算法
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 &nbsp; 分治搜索策略
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 &nbsp; 构建树问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 &nbsp; 汉诺塔问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 &nbsp; 小结
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
第 13 章 &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_14">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
第 13 章 &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 &nbsp; 回溯算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 &nbsp; 全排列问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 &nbsp; 子集和问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
第 14 章 &nbsp; 动态规划
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
<label class="md-nav__link " for="__nav_15">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
第 14 章 &nbsp; 动态规划
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 &nbsp; 初探动态规划
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 &nbsp; DP 问题特性
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 &nbsp; DP 解题思路
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 &nbsp; 0-1 背包问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 &nbsp; 完全背包问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 &nbsp; 编辑距离问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 &nbsp; 小结
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
第 15 章 &nbsp; 贪心
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
<label class="md-nav__link " for="__nav_16">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
第 15 章 &nbsp; 贪心
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 &nbsp; 贪心算法
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 &nbsp; 分数背包问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 &nbsp; 最大容量问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 &nbsp; 最大切分乘积问题
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 &nbsp; 小结
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
第 16 章 &nbsp; 附录
</span>
</a>
<label class="md-nav__link " for="__nav_17">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
第 16 章 &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 &nbsp; 编程环境安装
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 &nbsp; 一起参与创作
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<span class="md-ellipsis">
参考文献
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#931" class="md-nav__link">
9.3.1 &nbsp; 广度优先遍历
</a>
<nav class="md-nav" aria-label="9.3.1   广度优先遍历">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. &nbsp; 算法实现
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#932" class="md-nav__link">
9.3.2 &nbsp; 深度优先遍历
</a>
<nav class="md-nav" aria-label="9.3.2   深度优先遍历">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1_1" class="md-nav__link">
1. &nbsp; 算法实现
</a>
</li>
<li class="md-nav__item">
<a href="#2_1" class="md-nav__link">
2. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_graph/graph_traversal.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="93">9.3 &nbsp; 图的遍历<a class="headerlink" href="#93" title="Permanent link">&para;</a></h1>
<div class="admonition note">
<p class="admonition-title">图与树的关系</p>
<p>树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,<strong>树的遍历操作也是图的遍历操作的一种特例</strong>,建议你在学习本章节时融会贯通两者的概念与实现方法。</p>
</div>
<p>「图」和「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。</p>
<p>与树类似,图的遍历方式也可分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Traversal」也称为「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」简称 BFS 和 DFS。</p>
<h2 id="931">9.3.1 &nbsp; 广度优先遍历<a class="headerlink" href="#931" title="Permanent link">&para;</a></h2>
<p><strong>广度优先遍历是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张</strong>。具体来说,从某个顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。</p>
<p><img alt="图的广度优先遍历" src="../graph_traversal.assets/graph_bfs.png" /></p>
<p align="center"> 图:图的广度优先遍历 </p>
<h3 id="1">1. &nbsp; 算法实现<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>BFS 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。</p>
<ol>
<li>将遍历起始顶点 <code>startVet</code> 加入队列,并开启循环。</li>
<li>在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。</li>
<li>循环步骤 <code>2.</code> ,直到所有顶点被访问完成后结束。</li>
</ol>
<p>为了防止重复遍历顶点,我们需要借助一个哈希表 <code>visited</code> 来记录哪些节点已被访问。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JS</label><label for="__tabbed_1_6">TS</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label><label for="__tabbed_1_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="nf">graphBFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">LinkedList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">que</span><span class="p">.</span><span class="na">isEmpty</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="na">poll</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="na">adjList</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">vet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="na">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-0-26" name="__codelineno-0-26" href="#__codelineno-0-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">graphBFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="o">&amp;</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="n">unordered_set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="n">startVet</span><span class="p">};</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="n">queue</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">que</span><span class="p">;</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">que</span><span class="p">.</span><span class="n">empty</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">front</span><span class="p">();</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">pop</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="k">auto</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">count</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">emplace</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-1-25" name="__codelineno-1-25" href="#__codelineno-1-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-26" name="__codelineno-1-26" href="#__codelineno-1-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">graph_bfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">start_vet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="n">Vertex</span><span class="p">]:</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;广度优先遍历 BFS&quot;&quot;&quot;</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="c1"># 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="c1"># 顶点遍历序列</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="n">visited</span> <span class="o">=</span> <span class="nb">set</span><span class="p">[</span><span class="n">Vertex</span><span class="p">]([</span><span class="n">start_vet</span><span class="p">])</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="c1"># 队列用于实现 BFS</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="n">que</span> <span class="o">=</span> <span class="n">deque</span><span class="p">[</span><span class="n">Vertex</span><span class="p">]([</span><span class="n">start_vet</span><span class="p">])</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="c1"># 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="k">while</span> <span class="nb">len</span><span class="p">(</span><span class="n">que</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="n">vet</span> <span class="o">=</span> <span class="n">que</span><span class="o">.</span><span class="n">popleft</span><span class="p">()</span> <span class="c1"># 队首顶点出队</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1"># 记录访问顶点</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a> <span class="c1"># 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a> <span class="k">for</span> <span class="n">adj_vet</span> <span class="ow">in</span> <span class="n">graph</span><span class="o">.</span><span class="n">adj_list</span><span class="p">[</span><span class="n">vet</span><span class="p">]:</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a> <span class="k">if</span> <span class="n">adj_vet</span> <span class="ow">in</span> <span class="n">visited</span><span class="p">:</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a> <span class="k">continue</span> <span class="c1"># 跳过已被访问过的顶点</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a> <span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">adj_vet</span><span class="p">)</span> <span class="c1"># 只入队未访问的顶点</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a> <span class="n">visited</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">adj_vet</span><span class="p">)</span> <span class="c1"># 标记该顶点已被访问</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a> <span class="c1"># 返回顶点遍历序列</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="kd">func</span><span class="w"> </span><span class="nx">graphBFS</span><span class="p">(</span><span class="nx">g</span><span class="w"> </span><span class="o">*</span><span class="nx">graphAdjList</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="w"> </span><span class="nx">Vertex</span><span class="p">)</span><span class="w"> </span><span class="p">[]</span><span class="nx">Vertex</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="nx">Vertex</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="nx">visited</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">(</span><span class="kd">map</span><span class="p">[</span><span class="nx">Vertex</span><span class="p">]</span><span class="kd">struct</span><span class="p">{})</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nx">visited</span><span class="p">[</span><span class="nx">startVet</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kd">struct</span><span class="p">{}{}</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS, 使用切片模拟队列</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="nx">queue</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="nx">Vertex</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="nx">queue</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="nx">queue</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">)</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">queue</span><span class="p">)</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="nx">vet</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">queue</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="nx">queue</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">queue</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">vet</span><span class="p">)</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">_</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">g</span><span class="p">.</span><span class="nx">adjList</span><span class="p">[</span><span class="nx">vet</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="nx">_</span><span class="p">,</span><span class="w"> </span><span class="nx">isExist</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">visited</span><span class="p">[</span><span class="nx">adjVet</span><span class="p">]</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!</span><span class="nx">isExist</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="nx">queue</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="nx">queue</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="p">)</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="nx">visited</span><span class="p">[</span><span class="nx">adjVet</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kd">struct</span><span class="p">{}{}</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="kd">function</span><span class="w"> </span><span class="nx">graphBFS</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Set</span><span class="p">();</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">startVet</span><span class="p">);</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[</span><span class="nx">startVet</span><span class="p">];</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">que</span><span class="p">.</span><span class="nx">length</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">que</span><span class="p">.</span><span class="nx">shift</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">const</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="k">of</span><span class="w"> </span><span class="nx">graph</span><span class="p">.</span><span class="nx">adjList</span><span class="p">.</span><span class="nx">get</span><span class="p">(</span><span class="nx">vet</span><span class="p">)</span><span class="w"> </span><span class="o">??</span><span class="w"> </span><span class="p">[])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">visited</span><span class="p">.</span><span class="nx">has</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="nx">que</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="kd">function</span><span class="w"> </span><span class="nx">graphBFS</span><span class="p">(</span><span class="nx">graph</span><span class="o">:</span><span class="w"> </span><span class="kt">GraphAdjList</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="nx">Vertex</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span><span class="p">[]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">visited</span><span class="o">:</span><span class="w"> </span><span class="kt">Set</span><span class="o">&lt;</span><span class="nx">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Set</span><span class="p">();</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">startVet</span><span class="p">);</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[</span><span class="nx">startVet</span><span class="p">];</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">que</span><span class="p">.</span><span class="nx">length</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">que</span><span class="p">.</span><span class="nx">shift</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">const</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="k">of</span><span class="w"> </span><span class="nx">graph</span><span class="p">.</span><span class="nx">adjList</span><span class="p">.</span><span class="nx">get</span><span class="p">(</span><span class="nx">vet</span><span class="p">)</span><span class="w"> </span><span class="o">??</span><span class="w"> </span><span class="p">[])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">visited</span><span class="p">.</span><span class="nx">has</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="nx">que</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 广度优先遍历 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="nf">graphBFS</span><span class="p">(</span><span class="n">graphAdjList</span><span class="w"> </span><span class="o">*</span><span class="n">t</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">t</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="n">memset</span><span class="p">(</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">t</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="n">queue</span><span class="w"> </span><span class="o">*</span><span class="n">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newQueue</span><span class="p">(</span><span class="n">t</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="n">hashTable</span><span class="w"> </span><span class="o">*</span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newHash</span><span class="p">(</span><span class="n">t</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">resIndex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a><span class="w"> </span><span class="n">queuePush</span><span class="p">(</span><span class="n">que</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 将第一个元素入队</span>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="w"> </span><span class="n">hashMark</span><span class="p">(</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="o">-&gt;</span><span class="n">pos</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记第一个入队的顶点</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">que</span><span class="o">-&gt;</span><span class="n">head</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">que</span><span class="o">-&gt;</span><span class="n">tail</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-16" name="__codelineno-6-16" href="#__codelineno-6-16"></a><span class="w"> </span><span class="c1">// 遍历该顶点的边链表,将所有与该顶点有连接的,并且未被标记的顶点入队</span>
<a id="__codelineno-6-17" name="__codelineno-6-17" href="#__codelineno-6-17"></a><span class="w"> </span><span class="n">Node</span><span class="w"> </span><span class="o">*</span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">queueTop</span><span class="p">(</span><span class="n">que</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">linked</span><span class="o">-&gt;</span><span class="n">head</span><span class="o">-&gt;</span><span class="n">next</span><span class="p">;</span>
<a id="__codelineno-6-18" name="__codelineno-6-18" href="#__codelineno-6-18"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-19" name="__codelineno-6-19" href="#__codelineno-6-19"></a><span class="w"> </span><span class="c1">// 查询哈希表,若该索引的顶点已入队,则跳过,否则入队并标记</span>
<a id="__codelineno-6-20" name="__codelineno-6-20" href="#__codelineno-6-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">hashQuery</span><span class="p">(</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">val</span><span class="o">-&gt;</span><span class="n">pos</span><span class="p">)</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-21" name="__codelineno-6-21" href="#__codelineno-6-21"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">next</span><span class="p">;</span>
<a id="__codelineno-6-22" name="__codelineno-6-22" href="#__codelineno-6-22"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-6-23" name="__codelineno-6-23" href="#__codelineno-6-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-24" name="__codelineno-6-24" href="#__codelineno-6-24"></a><span class="w"> </span><span class="n">queuePush</span><span class="p">(</span><span class="n">que</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-6-25" name="__codelineno-6-25" href="#__codelineno-6-25"></a><span class="w"> </span><span class="n">hashMark</span><span class="p">(</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">val</span><span class="o">-&gt;</span><span class="n">pos</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-6-26" name="__codelineno-6-26" href="#__codelineno-6-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-27" name="__codelineno-6-27" href="#__codelineno-6-27"></a><span class="w"> </span><span class="c1">// 队首元素存入数组</span>
<a id="__codelineno-6-28" name="__codelineno-6-28" href="#__codelineno-6-28"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="n">resIndex</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">queueTop</span><span class="p">(</span><span class="n">que</span><span class="p">);</span><span class="w"> </span><span class="c1">// 队首顶点加入顶点遍历序列</span>
<a id="__codelineno-6-29" name="__codelineno-6-29" href="#__codelineno-6-29"></a><span class="w"> </span><span class="n">resIndex</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-6-30" name="__codelineno-6-30" href="#__codelineno-6-30"></a><span class="w"> </span><span class="n">queuePop</span><span class="p">(</span><span class="n">que</span><span class="p">);</span><span class="w"> </span><span class="c1">// 队首元素出队</span>
<a id="__codelineno-6-31" name="__codelineno-6-31" href="#__codelineno-6-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-32" name="__codelineno-6-32" href="#__codelineno-6-32"></a><span class="w"> </span><span class="c1">// 释放内存</span>
<a id="__codelineno-6-33" name="__codelineno-6-33" href="#__codelineno-6-33"></a><span class="w"> </span><span class="n">freeQueue</span><span class="p">(</span><span class="n">que</span><span class="p">);</span>
<a id="__codelineno-6-34" name="__codelineno-6-34" href="#__codelineno-6-34"></a><span class="w"> </span><span class="n">freeHash</span><span class="p">(</span><span class="n">visited</span><span class="p">);</span>
<a id="__codelineno-6-35" name="__codelineno-6-35" href="#__codelineno-6-35"></a><span class="w"> </span><span class="n">resIndex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-6-36" name="__codelineno-6-36" href="#__codelineno-6-36"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-6-37" name="__codelineno-6-37" href="#__codelineno-6-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-6-38" name="__codelineno-6-38" href="#__codelineno-6-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">graphBFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">()</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="n">startVet</span><span class="w"> </span><span class="p">};</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">Enqueue</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">que</span><span class="p">.</span><span class="n">Count</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">Dequeue</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">Contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">Enqueue</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="kd">func</span> <span class="nf">graphBFS</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">startVet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="kd">var</span> <span class="nv">visited</span><span class="p">:</span> <span class="n">Set</span><span class="p">&lt;</span><span class="n">Vertex</span><span class="p">&gt;</span> <span class="p">=</span> <span class="p">[</span><span class="n">startVet</span><span class="p">]</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="kd">var</span> <span class="nv">que</span><span class="p">:</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">]</span> <span class="p">=</span> <span class="p">[</span><span class="n">startVet</span><span class="p">]</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a> <span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a> <span class="k">while</span> <span class="o">!</span><span class="n">que</span><span class="p">.</span><span class="bp">isEmpty</span> <span class="p">{</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a> <span class="kd">let</span> <span class="nv">vet</span> <span class="p">=</span> <span class="n">que</span><span class="p">.</span><span class="n">removeFirst</span><span class="p">()</span> <span class="c1">// 队首顶点出队</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1">// 记录访问顶点</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a> <span class="k">for</span> <span class="n">adjVet</span> <span class="k">in</span> <span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">]</span> <span class="p">??</span> <span class="p">[]</span> <span class="p">{</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a> <span class="k">if</span> <span class="n">visited</span><span class="p">.</span><span class="bp">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a> <span class="k">continue</span> <span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a> <span class="p">}</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a> <span class="n">que</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">adjVet</span><span class="p">)</span> <span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a> <span class="n">visited</span><span class="p">.</span><span class="bp">insert</span><span class="p">(</span><span class="n">adjVet</span><span class="p">)</span> <span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a> <span class="p">}</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a> <span class="p">}</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a> <span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">graphBFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">graphBFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{};</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Queue</span><span class="p">();</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">que</span><span class="p">.</span><span class="n">isNotEmpty</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">removeFirst</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-10-17" name="__codelineno-10-17" href="#__codelineno-10-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">]</span><span class="o">!</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-18" name="__codelineno-10-18" href="#__codelineno-10-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-19" name="__codelineno-10-19" href="#__codelineno-10-19"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-10-20" name="__codelineno-10-20" href="#__codelineno-10-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-21" name="__codelineno-10-21" href="#__codelineno-10-21"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-10-22" name="__codelineno-10-22" href="#__codelineno-10-22"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">adjVet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-10-23" name="__codelineno-10-23" href="#__codelineno-10-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-24" name="__codelineno-10-24" href="#__codelineno-10-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-25" name="__codelineno-10-25" href="#__codelineno-10-25"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-10-26" name="__codelineno-10-26" href="#__codelineno-10-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-27" name="__codelineno-10-27" href="#__codelineno-10-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_bfs.rs</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 广度优先遍历 BFS */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="k">fn</span> <span class="nf">graph_bfs</span><span class="p">(</span><span class="n">graph</span>: <span class="nc">GraphAdjList</span><span class="p">,</span><span class="w"> </span><span class="n">start_vet</span>: <span class="nc">Vertex</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nb">Vec</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[];</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">HashSet</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">insert</span><span class="p">(</span><span class="n">start_vet</span><span class="p">);</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="c1">// 队列用于实现 BFS</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">que</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">VecDeque</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">start_vet</span><span class="p">);</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="c1">// 以顶点 vet 为起点,循环直至访问完所有顶点</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="o">!</span><span class="n">que</span><span class="p">.</span><span class="n">is_empty</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">vet</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">pop_front</span><span class="p">().</span><span class="n">unwrap</span><span class="p">();</span><span class="w"> </span><span class="c1">// 队首顶点出队</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">adj_vets</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adj_list</span><span class="p">.</span><span class="n">get</span><span class="p">(</span><span class="o">&amp;</span><span class="n">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="o">&amp;</span><span class="n">adj_vet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">adj_vets</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">contains</span><span class="p">(</span><span class="o">&amp;</span><span class="n">adj_vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-22" name="__codelineno-11-22" href="#__codelineno-11-22"></a><span class="w"> </span><span class="n">que</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">adj_vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 只入队未访问的顶点</span>
<a id="__codelineno-11-23" name="__codelineno-11-23" href="#__codelineno-11-23"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">insert</span><span class="p">(</span><span class="n">adj_vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-11-24" name="__codelineno-11-24" href="#__codelineno-11-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-25" name="__codelineno-11-25" href="#__codelineno-11-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-26" name="__codelineno-11-26" href="#__codelineno-11-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-27" name="__codelineno-11-27" href="#__codelineno-11-27"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-11-28" name="__codelineno-11-28" href="#__codelineno-11-28"></a><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-11-29" name="__codelineno-11-29" href="#__codelineno-11-29"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>代码相对抽象,建议对照以下动画图示来加深理解。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">&lt;1&gt;</label><label for="__tabbed_2_2">&lt;2&gt;</label><label for="__tabbed_2_3">&lt;3&gt;</label><label for="__tabbed_2_4">&lt;4&gt;</label><label for="__tabbed_2_5">&lt;5&gt;</label><label for="__tabbed_2_6">&lt;6&gt;</label><label for="__tabbed_2_7">&lt;7&gt;</label><label for="__tabbed_2_8">&lt;8&gt;</label><label for="__tabbed_2_9">&lt;9&gt;</label><label for="__tabbed_2_10">&lt;10&gt;</label><label for="__tabbed_2_11">&lt;11&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><img alt="图的广度优先遍历步骤" src="../graph_traversal.assets/graph_bfs_step1.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step2" src="../graph_traversal.assets/graph_bfs_step2.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step3" src="../graph_traversal.assets/graph_bfs_step3.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step4" src="../graph_traversal.assets/graph_bfs_step4.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step5" src="../graph_traversal.assets/graph_bfs_step5.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step6" src="../graph_traversal.assets/graph_bfs_step6.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step7" src="../graph_traversal.assets/graph_bfs_step7.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step8" src="../graph_traversal.assets/graph_bfs_step8.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step9" src="../graph_traversal.assets/graph_bfs_step9.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step10" src="../graph_traversal.assets/graph_bfs_step10.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_bfs_step11" src="../graph_traversal.assets/graph_bfs_step11.png" /></p>
</div>
</div>
</div>
<p align="center"> 图:图的广度优先遍历步骤 </p>
<div class="admonition question">
<p class="admonition-title">广度优先遍历的序列是否唯一?</p>
<p>不唯一。广度优先遍历只要求按“由近及远”的顺序遍历,<strong>而多个相同距离的顶点的遍历顺序是允许被任意打乱的</strong>。以上图为例,顶点 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(3\)</span> 的访问顺序可以交换、顶点 <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(4\)</span> , <span class="arithmatex">\(6\)</span> 的访问顺序也可以任意交换。</p>
</div>
<h3 id="2">2. &nbsp; 复杂度分析<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p><strong>时间复杂度:</strong> 所有顶点都会入队并出队一次,使用 <span class="arithmatex">\(O(|V|)\)</span> 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 <span class="arithmatex">\(2\)</span> 次,使用 <span class="arithmatex">\(O(2|E|)\)</span> 时间;总体使用 <span class="arithmatex">\(O(|V| + |E|)\)</span> 时间。</p>
<p><strong>空间复杂度:</strong> 列表 <code>res</code> ,哈希表 <code>visited</code> ,队列 <code>que</code> 中的顶点数量最多为 <span class="arithmatex">\(|V|\)</span> ,使用 <span class="arithmatex">\(O(|V|)\)</span> 空间。</p>
<h2 id="932">9.3.2 &nbsp; 深度优先遍历<a class="headerlink" href="#932" title="Permanent link">&para;</a></h2>
<p><strong>深度优先遍历是一种优先走到底、无路可走再回头的遍历方式</strong>。具体地,从某个顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。</p>
<p><img alt="图的深度优先遍历" src="../graph_traversal.assets/graph_dfs.png" /></p>
<p align="center"> 图:图的深度优先遍历 </p>
<h3 id="1_1">1. &nbsp; 算法实现<a class="headerlink" href="#1_1" title="Permanent link">&para;</a></h3>
<p>这种“走到尽头 + 回溯”的算法形式通常基于递归来实现。与 BFS 类似,在 DFS 中我们也需要借助一个哈希表 <code>visited</code> 来记录已被访问的顶点,以避免重复访问顶点。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JS</label><label for="__tabbed_3_6">TS</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label><label for="__tabbed_3_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.java</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="na">adjList</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">vet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="na">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">adjVet</span><span class="p">);</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="p">}</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="nf">graphDFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-12-21" name="__codelineno-12-21" href="#__codelineno-12-21"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-12-22" name="__codelineno-12-22" href="#__codelineno-12-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-12-23" name="__codelineno-12-23" href="#__codelineno-12-23"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.cpp</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="o">&amp;</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">unordered_set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">emplace</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">adjVet</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">count</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">adjVet</span><span class="p">);</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="p">}</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">graphDFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="o">&amp;</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-17" name="__codelineno-13-17" href="#__codelineno-13-17"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-13-18" name="__codelineno-13-18" href="#__codelineno-13-18"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-13-19" name="__codelineno-13-19" href="#__codelineno-13-19"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-13-20" name="__codelineno-13-20" href="#__codelineno-13-20"></a><span class="w"> </span><span class="n">unordered_set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*&gt;</span><span class="w"> </span><span class="n">visited</span><span class="p">;</span>
<a id="__codelineno-13-21" name="__codelineno-13-21" href="#__codelineno-13-21"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-13-22" name="__codelineno-13-22" href="#__codelineno-13-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-13-23" name="__codelineno-13-23" href="#__codelineno-13-23"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.py</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="k">def</span> <span class="nf">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">visited</span><span class="p">:</span> <span class="nb">set</span><span class="p">[</span><span class="n">Vertex</span><span class="p">],</span> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="n">Vertex</span><span class="p">],</span> <span class="n">vet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">):</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;深度优先遍历 DFS 辅助函数&quot;&quot;&quot;</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1"># 记录访问顶点</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a> <span class="n">visited</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1"># 标记该顶点已被访问</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a> <span class="c1"># 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a> <span class="k">for</span> <span class="n">adjVet</span> <span class="ow">in</span> <span class="n">graph</span><span class="o">.</span><span class="n">adj_list</span><span class="p">[</span><span class="n">vet</span><span class="p">]:</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a> <span class="k">if</span> <span class="n">adjVet</span> <span class="ow">in</span> <span class="n">visited</span><span class="p">:</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a> <span class="k">continue</span> <span class="c1"># 跳过已被访问过的顶点</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a> <span class="c1"># 递归访问邻接顶点</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a> <span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span> <span class="n">visited</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">adjVet</span><span class="p">)</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="k">def</span> <span class="nf">graph_dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">start_vet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="n">Vertex</span><span class="p">]:</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;深度优先遍历 DFS&quot;&quot;&quot;</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a> <span class="c1"># 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a> <span class="c1"># 顶点遍历序列</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a> <span class="c1"># 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-14-18" name="__codelineno-14-18" href="#__codelineno-14-18"></a> <span class="n">visited</span> <span class="o">=</span> <span class="nb">set</span><span class="p">[</span><span class="n">Vertex</span><span class="p">]()</span>
<a id="__codelineno-14-19" name="__codelineno-14-19" href="#__codelineno-14-19"></a> <span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span> <span class="n">visited</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">start_vet</span><span class="p">)</span>
<a id="__codelineno-14-20" name="__codelineno-14-20" href="#__codelineno-14-20"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.go</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">g</span><span class="w"> </span><span class="o">*</span><span class="nx">graphAdjList</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="w"> </span><span class="kd">map</span><span class="p">[</span><span class="nx">Vertex</span><span class="p">]</span><span class="kd">struct</span><span class="p">{},</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="nx">Vertex</span><span class="p">,</span><span class="w"> </span><span class="nx">vet</span><span class="w"> </span><span class="nx">Vertex</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="c1">// append 操作会返回新的的引用必须让原引用重新赋值为新slice的引用</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">vet</span><span class="p">)</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="nx">visited</span><span class="p">[</span><span class="nx">vet</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kd">struct</span><span class="p">{}{}</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">_</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">g</span><span class="p">.</span><span class="nx">adjList</span><span class="p">[</span><span class="nx">vet</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="nx">_</span><span class="p">,</span><span class="w"> </span><span class="nx">isExist</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">visited</span><span class="p">[</span><span class="nx">adjVet</span><span class="p">]</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!</span><span class="nx">isExist</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">g</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="p">)</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="p">}</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-15-18" name="__codelineno-15-18" href="#__codelineno-15-18"></a><span class="kd">func</span><span class="w"> </span><span class="nx">graphDFS</span><span class="p">(</span><span class="nx">g</span><span class="w"> </span><span class="o">*</span><span class="nx">graphAdjList</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="w"> </span><span class="nx">Vertex</span><span class="p">)</span><span class="w"> </span><span class="p">[]</span><span class="nx">Vertex</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-19" name="__codelineno-15-19" href="#__codelineno-15-19"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-15-20" name="__codelineno-15-20" href="#__codelineno-15-20"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="nx">Vertex</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-15-21" name="__codelineno-15-21" href="#__codelineno-15-21"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-15-22" name="__codelineno-15-22" href="#__codelineno-15-22"></a><span class="w"> </span><span class="nx">visited</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">(</span><span class="kd">map</span><span class="p">[</span><span class="nx">Vertex</span><span class="p">]</span><span class="kd">struct</span><span class="p">{})</span>
<a id="__codelineno-15-23" name="__codelineno-15-23" href="#__codelineno-15-23"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">g</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">)</span>
<a id="__codelineno-15-24" name="__codelineno-15-24" href="#__codelineno-15-24"></a><span class="w"> </span><span class="c1">// 返回顶点遍历序列</span>
<a id="__codelineno-15-25" name="__codelineno-15-25" href="#__codelineno-15-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-15-26" name="__codelineno-15-26" href="#__codelineno-15-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">const</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="k">of</span><span class="w"> </span><span class="nx">graph</span><span class="p">.</span><span class="nx">adjList</span><span class="p">.</span><span class="nx">get</span><span class="p">(</span><span class="nx">vet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">visited</span><span class="p">.</span><span class="nx">has</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="p">);</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="p">}</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="kd">function</span><span class="w"> </span><span class="nx">graphDFS</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-16-22" name="__codelineno-16-22" href="#__codelineno-16-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Set</span><span class="p">();</span>
<a id="__codelineno-16-23" name="__codelineno-16-23" href="#__codelineno-16-23"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">);</span>
<a id="__codelineno-16-24" name="__codelineno-16-24" href="#__codelineno-16-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-16-25" name="__codelineno-16-25" href="#__codelineno-16-25"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="nx">graph</span><span class="o">:</span><span class="w"> </span><span class="kt">GraphAdjList</span><span class="p">,</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="nx">visited</span><span class="o">:</span><span class="w"> </span><span class="kt">Set</span><span class="o">&lt;</span><span class="nx">Vertex</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span><span class="p">[],</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="nx">vet</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="nx">visited</span><span class="p">.</span><span class="nx">add</span><span class="p">(</span><span class="nx">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">const</span><span class="w"> </span><span class="nx">adjVet</span><span class="w"> </span><span class="k">of</span><span class="w"> </span><span class="nx">graph</span><span class="p">.</span><span class="nx">adjList</span><span class="p">.</span><span class="nx">get</span><span class="p">(</span><span class="nx">vet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">visited</span><span class="p">.</span><span class="nx">has</span><span class="p">(</span><span class="nx">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">adjVet</span><span class="p">);</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="p">}</span>
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a>
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a><span class="kd">function</span><span class="w"> </span><span class="nx">graphDFS</span><span class="p">(</span><span class="nx">graph</span><span class="o">:</span><span class="w"> </span><span class="kt">GraphAdjList</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="nx">Vertex</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-17-24" name="__codelineno-17-24" href="#__codelineno-17-24"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">Vertex</span><span class="p">[]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-17-25" name="__codelineno-17-25" href="#__codelineno-17-25"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-17-26" name="__codelineno-17-26" href="#__codelineno-17-26"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">visited</span><span class="o">:</span><span class="w"> </span><span class="kt">Set</span><span class="o">&lt;</span><span class="nx">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Set</span><span class="p">();</span>
<a id="__codelineno-17-27" name="__codelineno-17-27" href="#__codelineno-17-27"></a><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">graph</span><span class="p">,</span><span class="w"> </span><span class="nx">visited</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">startVet</span><span class="p">);</span>
<a id="__codelineno-17-28" name="__codelineno-17-28" href="#__codelineno-17-28"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-17-29" name="__codelineno-17-29" href="#__codelineno-17-29"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.c</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">resIndex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="kt">void</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">graphAdjList</span><span class="w"> </span><span class="o">*</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">hashTable</span><span class="w"> </span><span class="o">*</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">vet</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="n">res</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">hashQuery</span><span class="p">(</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">vet</span><span class="o">-&gt;</span><span class="n">pos</span><span class="p">)</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="n">hashMark</span><span class="p">(</span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">vet</span><span class="o">-&gt;</span><span class="n">pos</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记顶点并将顶点存入数组</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="n">resIndex</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">vet</span><span class="p">;</span><span class="w"> </span><span class="c1">// 将顶点存入数组</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="n">resIndex</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="w"> </span><span class="c1">// 遍历该顶点链表</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="w"> </span><span class="n">Node</span><span class="w"> </span><span class="o">*</span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">vet</span><span class="o">-&gt;</span><span class="n">linked</span><span class="o">-&gt;</span><span class="n">head</span><span class="o">-&gt;</span><span class="n">next</span><span class="p">;</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="o">-&gt;</span><span class="n">next</span><span class="p">;</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="p">}</span>
<a id="__codelineno-18-19" name="__codelineno-18-19" href="#__codelineno-18-19"></a>
<a id="__codelineno-18-20" name="__codelineno-18-20" href="#__codelineno-18-20"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-18-21" name="__codelineno-18-21" href="#__codelineno-18-21"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-18-22" name="__codelineno-18-22" href="#__codelineno-18-22"></a><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="nf">graphDFS</span><span class="p">(</span><span class="n">graphAdjList</span><span class="w"> </span><span class="o">*</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-23" name="__codelineno-18-23" href="#__codelineno-18-23"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-18-24" name="__codelineno-18-24" href="#__codelineno-18-24"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">**</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="k">sizeof</span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">graph</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-18-25" name="__codelineno-18-25" href="#__codelineno-18-25"></a><span class="w"> </span><span class="n">memset</span><span class="p">(</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">graph</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-18-26" name="__codelineno-18-26" href="#__codelineno-18-26"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-18-27" name="__codelineno-18-27" href="#__codelineno-18-27"></a><span class="w"> </span><span class="n">hashTable</span><span class="w"> </span><span class="o">*</span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newHash</span><span class="p">(</span><span class="n">graph</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">);</span>
<a id="__codelineno-18-28" name="__codelineno-18-28" href="#__codelineno-18-28"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-18-29" name="__codelineno-18-29" href="#__codelineno-18-29"></a><span class="w"> </span><span class="c1">// 释放哈希表内存并将数组索引归零</span>
<a id="__codelineno-18-30" name="__codelineno-18-30" href="#__codelineno-18-30"></a><span class="w"> </span><span class="n">freeHash</span><span class="p">(</span><span class="n">visited</span><span class="p">);</span>
<a id="__codelineno-18-31" name="__codelineno-18-31" href="#__codelineno-18-31"></a><span class="w"> </span><span class="n">resIndex</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-18-32" name="__codelineno-18-32" href="#__codelineno-18-32"></a><span class="w"> </span><span class="c1">// 返回遍历数组</span>
<a id="__codelineno-18-33" name="__codelineno-18-33" href="#__codelineno-18-33"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-18-34" name="__codelineno-18-34" href="#__codelineno-18-34"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.cs</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">Contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点 </span>
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">adjVet</span><span class="p">);</span>
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a><span class="p">}</span>
<a id="__codelineno-19-14" name="__codelineno-19-14" href="#__codelineno-19-14"></a>
<a id="__codelineno-19-15" name="__codelineno-19-15" href="#__codelineno-19-15"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-19-16" name="__codelineno-19-16" href="#__codelineno-19-16"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-19-17" name="__codelineno-19-17" href="#__codelineno-19-17"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">graphDFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-18" name="__codelineno-19-18" href="#__codelineno-19-18"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-19-19" name="__codelineno-19-19" href="#__codelineno-19-19"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-19-20" name="__codelineno-19-20" href="#__codelineno-19-20"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-19-21" name="__codelineno-19-21" href="#__codelineno-19-21"></a><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-19-22" name="__codelineno-19-22" href="#__codelineno-19-22"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-19-23" name="__codelineno-19-23" href="#__codelineno-19-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-19-24" name="__codelineno-19-24" href="#__codelineno-19-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.swift</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="kd">func</span> <span class="nf">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">visited</span><span class="p">:</span> <span class="kr">inout</span> <span class="n">Set</span><span class="p">&lt;</span><span class="n">Vertex</span><span class="p">&gt;,</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">],</span> <span class="n">vet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1">// 记录访问顶点</span>
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a> <span class="n">visited</span><span class="p">.</span><span class="bp">insert</span><span class="p">(</span><span class="n">vet</span><span class="p">)</span> <span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a> <span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a> <span class="k">for</span> <span class="n">adjVet</span> <span class="k">in</span> <span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">]</span> <span class="p">??</span> <span class="p">[]</span> <span class="p">{</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a> <span class="k">if</span> <span class="n">visited</span><span class="p">.</span><span class="bp">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a> <span class="k">continue</span> <span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a> <span class="p">}</span>
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a> <span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a> <span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">graph</span><span class="p">,</span> <span class="n">visited</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">visited</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">vet</span><span class="p">:</span> <span class="n">adjVet</span><span class="p">)</span>
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a> <span class="p">}</span>
<a id="__codelineno-20-13" name="__codelineno-20-13" href="#__codelineno-20-13"></a><span class="p">}</span>
<a id="__codelineno-20-14" name="__codelineno-20-14" href="#__codelineno-20-14"></a>
<a id="__codelineno-20-15" name="__codelineno-20-15" href="#__codelineno-20-15"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-20-16" name="__codelineno-20-16" href="#__codelineno-20-16"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-20-17" name="__codelineno-20-17" href="#__codelineno-20-17"></a><span class="kd">func</span> <span class="nf">graphDFS</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">GraphAdjList</span><span class="p">,</span> <span class="n">startVet</span><span class="p">:</span> <span class="n">Vertex</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-20-18" name="__codelineno-20-18" href="#__codelineno-20-18"></a> <span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-20-19" name="__codelineno-20-19" href="#__codelineno-20-19"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[</span><span class="n">Vertex</span><span class="p">]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-20-20" name="__codelineno-20-20" href="#__codelineno-20-20"></a> <span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-20-21" name="__codelineno-20-21" href="#__codelineno-20-21"></a> <span class="kd">var</span> <span class="nv">visited</span><span class="p">:</span> <span class="n">Set</span><span class="p">&lt;</span><span class="n">Vertex</span><span class="p">&gt;</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-20-22" name="__codelineno-20-22" href="#__codelineno-20-22"></a> <span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">:</span> <span class="n">graph</span><span class="p">,</span> <span class="n">visited</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">visited</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">vet</span><span class="p">:</span> <span class="n">startVet</span><span class="p">)</span>
<a id="__codelineno-20-23" name="__codelineno-20-23" href="#__codelineno-20-23"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-20-24" name="__codelineno-20-24" href="#__codelineno-20-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.zig</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">graphDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.dart</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">vet</span><span class="p">,</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Vertex</span><span class="w"> </span><span class="n">adjVet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adjList</span><span class="p">[</span><span class="n">vet</span><span class="p">]</span><span class="o">!</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">visited</span><span class="p">.</span><span class="n">contains</span><span class="p">(</span><span class="n">adjVet</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">adjVet</span><span class="p">);</span>
<a id="__codelineno-22-17" name="__codelineno-22-17" href="#__codelineno-22-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-18" name="__codelineno-22-18" href="#__codelineno-22-18"></a><span class="p">}</span>
<a id="__codelineno-22-19" name="__codelineno-22-19" href="#__codelineno-22-19"></a>
<a id="__codelineno-22-20" name="__codelineno-22-20" href="#__codelineno-22-20"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-22-21" name="__codelineno-22-21" href="#__codelineno-22-21"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">graphDFS</span><span class="p">(</span><span class="n">GraphAdjList</span><span class="w"> </span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">Vertex</span><span class="w"> </span><span class="n">startVet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-22" name="__codelineno-22-22" href="#__codelineno-22-22"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-22-23" name="__codelineno-22-23" href="#__codelineno-22-23"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-22-24" name="__codelineno-22-24" href="#__codelineno-22-24"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-22-25" name="__codelineno-22-25" href="#__codelineno-22-25"></a><span class="w"> </span><span class="n">Set</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{};</span>
<a id="__codelineno-22-26" name="__codelineno-22-26" href="#__codelineno-22-26"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">startVet</span><span class="p">);</span>
<a id="__codelineno-22-27" name="__codelineno-22-27" href="#__codelineno-22-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-22-28" name="__codelineno-22-28" href="#__codelineno-22-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">graph_dfs.rs</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 深度优先遍历 DFS 辅助函数 */</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="k">fn</span> <span class="nf">dfs</span><span class="p">(</span><span class="n">graph</span>: <span class="kp">&amp;</span><span class="nc">GraphAdjList</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="n">HashSet</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">res</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">vet</span>: <span class="nc">Vertex</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录访问顶点</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">insert</span><span class="p">(</span><span class="n">vet</span><span class="p">);</span><span class="w"> </span><span class="c1">// 标记该顶点已被访问</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="c1">// 遍历该顶点的所有邻接顶点</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">adj_vets</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">graph</span><span class="p">.</span><span class="n">adj_list</span><span class="p">.</span><span class="n">get</span><span class="p">(</span><span class="o">&amp;</span><span class="n">vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="o">&amp;</span><span class="n">adj_vet</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">adj_vets</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">visited</span><span class="p">.</span><span class="n">contains</span><span class="p">(</span><span class="o">&amp;</span><span class="n">adj_vet</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="k">continue</span><span class="p">;</span><span class="w"> </span><span class="c1">// 跳过已被访问过的顶点</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="c1">// 递归访问邻接顶点</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">adj_vet</span><span class="p">);</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="p">}</span>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="cm">/* 深度优先遍历 DFS */</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="c1">// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点</span>
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="k">fn</span> <span class="nf">graph_dfs</span><span class="p">(</span><span class="n">graph</span>: <span class="nc">GraphAdjList</span><span class="p">,</span><span class="w"> </span><span class="n">start_vet</span>: <span class="nc">Vertex</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nb">Vec</span><span class="o">&lt;</span><span class="n">Vertex</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="c1">// 顶点遍历序列</span>
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[];</span>
<a id="__codelineno-23-22" name="__codelineno-23-22" href="#__codelineno-23-22"></a><span class="w"> </span><span class="c1">// 哈希表,用于记录已被访问过的顶点</span>
<a id="__codelineno-23-23" name="__codelineno-23-23" href="#__codelineno-23-23"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">visited</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">HashSet</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-23-24" name="__codelineno-23-24" href="#__codelineno-23-24"></a><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="o">&amp;</span><span class="n">graph</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">visited</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">start_vet</span><span class="p">);</span>
<a id="__codelineno-23-25" name="__codelineno-23-25" href="#__codelineno-23-25"></a>
<a id="__codelineno-23-26" name="__codelineno-23-26" href="#__codelineno-23-26"></a><span class="w"> </span><span class="n">res</span>
<a id="__codelineno-23-27" name="__codelineno-23-27" href="#__codelineno-23-27"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>深度优先遍历的算法流程如下图所示,其中:</p>
<ul>
<li><strong>直虚线代表向下递推</strong>,表示开启了一个新的递归方法来访问新顶点。</li>
<li><strong>曲虚线代表向上回溯</strong>,表示此递归方法已经返回,回溯到了开启此递归方法的位置。</li>
</ul>
<p>为了加深理解,建议将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:11"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label><label for="__tabbed_4_5">&lt;5&gt;</label><label for="__tabbed_4_6">&lt;6&gt;</label><label for="__tabbed_4_7">&lt;7&gt;</label><label for="__tabbed_4_8">&lt;8&gt;</label><label for="__tabbed_4_9">&lt;9&gt;</label><label for="__tabbed_4_10">&lt;10&gt;</label><label for="__tabbed_4_11">&lt;11&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><img alt="图的深度优先遍历步骤" src="../graph_traversal.assets/graph_dfs_step1.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step2" src="../graph_traversal.assets/graph_dfs_step2.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step3" src="../graph_traversal.assets/graph_dfs_step3.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step4" src="../graph_traversal.assets/graph_dfs_step4.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step5" src="../graph_traversal.assets/graph_dfs_step5.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step6" src="../graph_traversal.assets/graph_dfs_step6.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step7" src="../graph_traversal.assets/graph_dfs_step7.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step8" src="../graph_traversal.assets/graph_dfs_step8.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step9" src="../graph_traversal.assets/graph_dfs_step9.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step10" src="../graph_traversal.assets/graph_dfs_step10.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="graph_dfs_step11" src="../graph_traversal.assets/graph_dfs_step11.png" /></p>
</div>
</div>
</div>
<p align="center"> 图:图的深度优先遍历步骤 </p>
<div class="admonition question">
<p class="admonition-title">深度优先遍历的序列是否唯一?</p>
<p>与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。</p>
<p>以树的遍历为例,“根 <span class="arithmatex">\(\rightarrow\)</span><span class="arithmatex">\(\rightarrow\)</span> 右”、“左 <span class="arithmatex">\(\rightarrow\)</span><span class="arithmatex">\(\rightarrow\)</span> 右”、“左 <span class="arithmatex">\(\rightarrow\)</span><span class="arithmatex">\(\rightarrow\)</span> 根”分别对应前序、中序、后序遍历,它们展示了三种不同的遍历优先级,然而这三者都属于深度优先遍历。</p>
</div>
<h3 id="2_1">2. &nbsp; 复杂度分析<a class="headerlink" href="#2_1" title="Permanent link">&para;</a></h3>
<p><strong>时间复杂度:</strong> 所有顶点都会被访问 <span class="arithmatex">\(1\)</span> 次,使用 <span class="arithmatex">\(O(|V|)\)</span> 时间;所有边都会被访问 <span class="arithmatex">\(2\)</span> 次,使用 <span class="arithmatex">\(O(2|E|)\)</span> 时间;总体使用 <span class="arithmatex">\(O(|V| + |E|)\)</span> 时间。</p>
<p><strong>空间复杂度:</strong> 列表 <code>res</code> ,哈希表 <code>visited</code> 顶点数量最多为 <span class="arithmatex">\(|V|\)</span> ,递归深度最大为 <span class="arithmatex">\(|V|\)</span> ,因此使用 <span class="arithmatex">\(O(|V|)\)</span> 空间。</p>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../graph_operations/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 9.2 &amp;nbsp; 图基础操作" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
9.2 &nbsp; 图基础操作
</div>
</div>
</a>
<a href="../summary/" class="md-footer__link md-footer__link--next" aria-label="下一页: 9.4 &amp;nbsp; 小结" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
9.4 &nbsp; 小结
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.instant", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.780af0f4.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.f11ae8b1.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>