You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/csharp/chapter_tree/binary_search_tree.cs

161 lines
4.7 KiB

/**
* File: binary_search_tree.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_tree;
class BinarySearchTree {
TreeNode? root;
public BinarySearchTree() {
// 初始化空樹
root = null;
}
/* 獲取二元樹根節點 */
public TreeNode? GetRoot() {
return root;
}
/* 查詢節點 */
public TreeNode? Search(int num) {
TreeNode? cur = root;
// 迴圈查詢,越過葉節點後跳出
while (cur != null) {
// 目標節點在 cur 的右子樹中
if (cur.val < num) cur =
cur.right;
// 目標節點在 cur 的左子樹中
else if (cur.val > num)
cur = cur.left;
// 找到目標節點,跳出迴圈
else
break;
}
// 返回目標節點
return cur;
}
/* 插入節點 */
public void Insert(int num) {
// 若樹為空,則初始化根節點
if (root == null) {
root = new TreeNode(num);
return;
}
TreeNode? cur = root, pre = null;
// 迴圈查詢,越過葉節點後跳出
while (cur != null) {
// 找到重複節點,直接返回
if (cur.val == num)
return;
pre = cur;
// 插入位置在 cur 的右子樹中
if (cur.val < num)
cur = cur.right;
// 插入位置在 cur 的左子樹中
else
cur = cur.left;
}
// 插入節點
TreeNode node = new(num);
if (pre != null) {
if (pre.val < num)
pre.right = node;
else
pre.left = node;
}
}
/* 刪除節點 */
public void Remove(int num) {
// 若樹為空,直接提前返回
if (root == null)
return;
TreeNode? cur = root, pre = null;
// 迴圈查詢,越過葉節點後跳出
while (cur != null) {
// 找到待刪除節點,跳出迴圈
if (cur.val == num)
break;
pre = cur;
// 待刪除節點在 cur 的右子樹中
if (cur.val < num)
cur = cur.right;
// 待刪除節點在 cur 的左子樹中
else
cur = cur.left;
}
// 若無待刪除節點,則直接返回
if (cur == null)
return;
// 子節點數量 = 0 or 1
if (cur.left == null || cur.right == null) {
// 當子節點數量 = 0 / 1 時, child = null / 該子節點
TreeNode? child = cur.left ?? cur.right;
// 刪除節點 cur
if (cur != root) {
if (pre!.left == cur)
pre.left = child;
else
pre.right = child;
} else {
// 若刪除節點為根節點,則重新指定根節點
root = child;
}
}
// 子節點數量 = 2
else {
// 獲取中序走訪中 cur 的下一個節點
TreeNode? tmp = cur.right;
while (tmp.left != null) {
tmp = tmp.left;
}
// 遞迴刪除節點 tmp
Remove(tmp.val!.Value);
// 用 tmp 覆蓋 cur
cur.val = tmp.val;
}
}
}
public class binary_search_tree {
[Test]
public void Test() {
/* 初始化二元搜尋樹 */
BinarySearchTree bst = new();
// 請注意,不同的插入順序會生成不同的二元樹,該序列可以生成一個完美二元樹
int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
foreach (int num in nums) {
bst.Insert(num);
}
Console.WriteLine("\n初始化的二元樹為\n");
PrintUtil.PrintTree(bst.GetRoot());
/* 查詢節點 */
TreeNode? node = bst.Search(7);
Console.WriteLine("\n查詢到的節點物件為 " + node + ",節點值 = " + node?.val);
/* 插入節點 */
bst.Insert(16);
Console.WriteLine("\n插入節點 16 後,二元樹為\n");
PrintUtil.PrintTree(bst.GetRoot());
/* 刪除節點 */
bst.Remove(1);
Console.WriteLine("\n刪除節點 1 後,二元樹為\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(2);
Console.WriteLine("\n刪除節點 2 後,二元樹為\n");
PrintUtil.PrintTree(bst.GetRoot());
bst.Remove(4);
Console.WriteLine("\n刪除節點 4 後,二元樹為\n");
PrintUtil.PrintTree(bst.GetRoot());
}
}