You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_graph/basic_operation_of_graph.md

330 lines
10 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
---
# 图基础操作
图的基础操作分为对「边」的操作和对「顶点」的操作,在「邻接矩阵」和「邻接表」这两种表示下的实现方式不同。
## 基于邻接矩阵的实现
设图的顶点总数为 $n$ ,则有:
- **添加或删除边**:直接在邻接矩阵中修改指定边的对应元素即可,使用 $O(1)$ 时间。而由于是无向图,因此需要同时更新两个方向的边。
- **添加顶点**:在邻接矩阵的尾部添加一行一列,并全部填 $0$ 即可,使用 $O(n)$ 时间。
- **删除顶点**:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将 $(n-1)^2$ 个元素“向左上移动”,从而使用 $O(n^2)$ 时间。
- **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。
=== "初始化邻接矩阵"
![adjacency_matrix_initialization](basic_operation_of_graph.assets/adjacency_matrix_initialization.png)
=== "添加边"
![adjacency_matrix_add_edge](basic_operation_of_graph.assets/adjacency_matrix_add_edge.png)
=== "删除边"
![adjacency_matrix_remove_edge](basic_operation_of_graph.assets/adjacency_matrix_remove_edge.png)
=== "添加顶点"
![adjacency_matrix_add_vertex](basic_operation_of_graph.assets/adjacency_matrix_add_vertex.png)
=== "删除顶点"
![adjacency_matrix_remove_vertex](basic_operation_of_graph.assets/adjacency_matrix_remove_vertex.png)
以下是基于邻接矩阵表示图的实现代码。
=== "Java"
```java title="graph_adjacency_matrix.java"
/* 基于邻接矩阵实现的无向图类 */
class GraphAdjMat {
List<Integer> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
List<List<Integer>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
/* 构造函数 */
public GraphAdjMat(int[] vertices, int[][] edges) {
this.vertices = new ArrayList<>();
this.adjMat = new ArrayList<>();
// 添加顶点
for (int val : vertices) {
addVertex(val);
}
// 添加边
// 请注意edges 元素代表顶点索引,即对应 vertices 元素索引
for (int[] e : edges) {
addEdge(e[0], e[1]);
}
}
/* 获取顶点数量 */
public int size() {
return vertices.size();
}
/* 添加顶点 */
public void addVertex(int val) {
int n = size();
// 向顶点列表中添加新顶点的值
vertices.add(val);
// 在邻接矩阵中添加一行
List<Integer> newRow = new ArrayList<>(n);
for (int j = 0; j < n; j++) {
newRow.add(0);
}
adjMat.add(newRow);
// 在邻接矩阵中添加一列
for (List<Integer> row : adjMat) {
row.add(0);
}
}
/* 删除顶点 */
public void removeVertex(int index) {
if (index >= size())
throw new IndexOutOfBoundsException();
// 在顶点列表中移除索引 index 的顶点
vertices.remove(index);
// 在邻接矩阵中删除索引 index 的行
adjMat.remove(index);
// 在邻接矩阵中删除索引 index 的列
for (List<Integer> row : adjMat) {
row.remove(index);
}
}
/* 添加边 */
// 参数 i, j 对应 vertices 元素索引
public void addEdge(int i, int j) {
// 索引越界与相等处理
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
throw new IndexOutOfBoundsException();
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
adjMat.get(i).set(j, 1);
adjMat.get(j).set(i, 1);
}
/* 删除边 */
// 参数 i, j 对应 vertices 元素索引
public void removeEdge(int i, int j) {
// 索引越界与相等处理
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
throw new IndexOutOfBoundsException();
adjMat.get(i).set(j, 0);
adjMat.get(j).set(i, 0);
}
}
```
=== "C++"
```cpp title="graph_adjacency_matrix.cpp"
```
=== "Python"
```python title="graph_adjacency_matrix.py"
```
=== "Go"
```go title="graph_adjacency_matrix.go"
```
=== "JavaScript"
```js title="graph_adjacency_matrix.js"
```
=== "TypeScript"
```typescript title="graph_adjacency_matrix.ts"
```
=== "C"
```c title="graph_adjacency_matrix.c"
```
=== "C#"
```csharp title="graph_adjacency_matrix.cs"
```
=== "Swift"
```swift title="graph_adjacency_matrix.swift"
```
## 基于邻接表的实现
设图的顶点总数为 $n$ 、边总数为 $m$ ,则有:
- **添加边**:在顶点对应链表的尾部添加边即可,使用 $O(1)$ 时间。因为是无向图,所以需要同时添加两个方向的边。
- **删除边**:在顶点对应链表中查询与删除指定边,使用 $O(m)$ 时间。与添加边一样,需要同时删除两个方向的边。
- **添加顶点**:在邻接表中添加一个链表即可,并以新增顶点为链表头结点,使用 $O(1)$ 时间。
- **删除顶点**:需要遍历整个邻接表,删除包含指定顶点的所有边,使用 $O(n + m)$ 时间。
- **初始化**:需要在邻接表中建立 $n$ 个结点和 $2m$ 条边,使用 $O(n + m)$ 时间。
=== "初始化邻接表"
![adjacency_list_initialization](basic_operation_of_graph.assets/adjacency_list_initialization.png)
=== "添加边"
![adjacency_list_add_edge](basic_operation_of_graph.assets/adjacency_list_add_edge.png)
=== "删除边"
![adjacency_list_remove_edge](basic_operation_of_graph.assets/adjacency_list_remove_edge.png)
=== "添加顶点"
![adjacency_list_add_vertex](basic_operation_of_graph.assets/adjacency_list_add_vertex.png)
=== "删除顶点"
![adjacency_list_remove_vertex](basic_operation_of_graph.assets/adjacency_list_remove_vertex.png)
基于邻接表实现图的代码如下所示。
=== "Java"
```java title="graph_adjacency_list.java"
/* 顶点类 */
class Vertex {
int val;
public Vertex(int val) {
this.val = val;
}
}
/* 基于邻接表实现的无向图类 */
class GraphAdjList {
// 请注意vertices 和 adjList 中存储的都是 Vertex 对象
Map<Vertex, Set<Vertex>> adjList; // 邻接表(使用哈希表实现)
/* 构造函数 */
public GraphAdjList(Vertex[][] edges) {
this.adjList = new HashMap<>();
// 添加所有顶点和边
for (Vertex[] edge : edges) {
addVertex(edge[0]);
addVertex(edge[1]);
addEdge(edge[0], edge[1]);
}
}
/* 获取顶点数量 */
public int size() {
return adjList.size();
}
/* 添加边 */
public void addEdge(Vertex vet1, Vertex vet2) {
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
throw new IllegalArgumentException();
// 添加边 vet1 - vet2
adjList.get(vet1).add(vet2);
adjList.get(vet2).add(vet1);
}
/* 删除边 */
public void removeEdge(Vertex vet1, Vertex vet2) {
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
throw new IllegalArgumentException();
// 删除边 vet1 - vet2
adjList.get(vet1).remove(vet2);
adjList.get(vet2).remove(vet1);
}
/* 添加顶点 */
public void addVertex(Vertex vet) {
if (adjList.containsKey(vet))
return;
// 在邻接表中添加一个新链表(即 HashSet
adjList.put(vet, new HashSet<>());
}
/* 删除顶点 */
public void removeVertex(Vertex vet) {
if (!adjList.containsKey(vet))
throw new IllegalArgumentException();
// 在邻接表中删除顶点 vet 对应的链表(即 HashSet
adjList.remove(vet);
// 遍历其它顶点的链表(即 HashSet删除所有包含 vet 的边
for (Set<Vertex> set : adjList.values()) {
set.remove(vet);
}
}
}
```
=== "C++"
```cpp title="graph_adjacency_list.cpp"
```
=== "Python"
```python title="graph_adjacency_list.py"
```
=== "Go"
```go title="graph_adjacency_list.go"
```
=== "JavaScript"
```js title="graph_adjacency_list.js"
```
=== "TypeScript"
```typescript title="graph_adjacency_list.ts"
```
=== "C"
```c title="graph_adjacency_list.c"
```
=== "C#"
```csharp title="graph_adjacency_list.cs"
```
=== "Swift"
```swift title="graph_adjacency_list.swift"
```
## 效率对比
设图中共有 $n$ 个顶点和 $m$ 条边,下表为邻接矩阵和邻接表的时间和空间效率对比。
<div class="center-table" markdown>
| | 邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) |
| ------------ | -------- | -------------- | ---------------- |
| 判断是否邻接 | $O(1)$ | $O(m)$ | $O(1)$ |
| 添加边 | $O(1)$ | $O(1)$ | $O(1)$ |
| 删除边 | $O(1)$ | $O(m)$ | $O(1)$ |
| 添加顶点 | $O(n)$ | $O(1)$ | $O(1)$ |
| 删除顶点 | $O(n^2)$ | $O(n + m)$ | $O(n)$ |
| 内存空间占用 | $O(n^2)$ | $O(n + m)$ | $O(n + m)$ |
</div>
观察上表,貌似邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。总结以上,**邻接矩阵体现“以空间换时间”,邻接表体现“以时间换空间”**。