You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_dynamic_programming/intro_to_dynamic_programming/index.html

3087 lines
195 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_dynamic_programming/intro_to_dynamic_programming/">
<link rel="prev" href="../">
<link rel="next" href="../dp_problem_features/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.1.11">
<title>13.1.   初探动态规划New - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.85bb2934.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.a6bdf11c.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#131" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
13.1. &nbsp; 初探动态规划New
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_preface/">0. &nbsp; &nbsp; 前言</a>
<label for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
0. &nbsp; &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
0.1. &nbsp; 关于本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
0.2. &nbsp; 如何使用本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
0.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_introduction/">1. &nbsp; &nbsp; 初识算法</a>
<label for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
1. &nbsp; &nbsp; 初识算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
1.1. &nbsp; 算法无处不在
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
1.2. &nbsp; 算法是什么
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
1.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_computational_complexity/">2. &nbsp; &nbsp; 复杂度</a>
<label for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
2. &nbsp; &nbsp; 复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
2.1. &nbsp; 算法效率评估
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
2.2. &nbsp; 时间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
2.3. &nbsp; 空间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
2.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_data_structure/">3. &nbsp; &nbsp; 数据结构</a>
<label for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
3. &nbsp; &nbsp; 数据结构
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
3.1. &nbsp; 数据结构分类
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
3.2. &nbsp; 基本数据类型
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
3.3. &nbsp; 数字编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
3.4. &nbsp; 字符编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
3.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_array_and_linkedlist/">4. &nbsp; &nbsp; 数组与链表</a>
<label for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
4. &nbsp; &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
4.1. &nbsp; 数组
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
4.2. &nbsp; 链表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
4.3. &nbsp; 列表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
4.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_stack_and_queue/">5. &nbsp; &nbsp; 栈与队列</a>
<label for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
5. &nbsp; &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
5.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
5.2. &nbsp; 队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
5.3. &nbsp; 双向队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
5.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_hashing/">6. &nbsp; &nbsp; 散列表</a>
<label for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
6.1. &nbsp; 哈希表New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
6.2. &nbsp; 哈希冲突New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
6.3. &nbsp; 哈希算法New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
6.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_tree/">7. &nbsp; &nbsp;</a>
<label for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
7.1. &nbsp; 二叉树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
7.2. &nbsp; 二叉树遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
7.3. &nbsp; 二叉树数组表示
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
7.4. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
7.5. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
7.6. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_heap/">8. &nbsp; &nbsp;</a>
<label for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
8.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
8.2. &nbsp; 建堆操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
8.3. &nbsp; Top-K 问题New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
8.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_graph/">9. &nbsp; &nbsp;</a>
<label for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
9.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
9.2. &nbsp; 图基础操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
9.3. &nbsp; 图的遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
9.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_searching/">10. &nbsp; &nbsp; 搜索</a>
<label for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
10.1. &nbsp; 二分查找
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
10.2. &nbsp; 二分查找边界
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
10.3. &nbsp; 哈希优化策略
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
10.4. &nbsp; 重识搜索算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
10.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_sorting/">11. &nbsp; &nbsp; 排序</a>
<label for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
11. &nbsp; &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
11.1. &nbsp; 排序算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
11.2. &nbsp; 选择排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
11.3. &nbsp; 冒泡排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
11.4. &nbsp; 插入排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
11.5. &nbsp; 快速排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
11.6. &nbsp; 归并排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
11.7. &nbsp; 堆排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
11.8. &nbsp; 桶排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
11.9. &nbsp; 计数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
11.10. &nbsp; 基数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
11.11. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_backtracking/">12. &nbsp; &nbsp; 回溯</a>
<label for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
12.1. &nbsp; 回溯算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
12.2. &nbsp; 全排列问题
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
12.3. &nbsp; 子集和问题New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
12.4. &nbsp; N 皇后问题
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
12.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" checked>
<div class="md-nav__link md-nav__link--index ">
<a href="../">13. &nbsp; &nbsp; 动态规划</a>
<label for="__nav_14">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; &nbsp; 动态规划
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
13.1. &nbsp; 初探动态规划New
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
13.1. &nbsp; 初探动态规划New
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1311" class="md-nav__link">
13.1.1. &nbsp; 方法一:暴力搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1312" class="md-nav__link">
13.1.2. &nbsp; 方法二:记忆化搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1313" class="md-nav__link">
13.1.3. &nbsp; 方法三:动态规划
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../dp_problem_features/" class="md-nav__link">
13.2. &nbsp; DP 问题特性New
</a>
</li>
<li class="md-nav__item">
<a href="../dp_solution_pipeline/" class="md-nav__link">
13.3. &nbsp; DP 解题思路New
</a>
</li>
<li class="md-nav__item">
<a href="../knapsack_problem/" class="md-nav__link">
13.4. &nbsp; 0-1 背包问题New
</a>
</li>
<li class="md-nav__item">
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
13.5. &nbsp; 完全背包问题New
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<label class="md-nav__link" for="__nav_15" id="__nav_15_label" tabindex="0">
14. &nbsp; &nbsp; 附录
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
14. &nbsp; &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
14.1. &nbsp; 编程环境安装
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
14.2. &nbsp; 一起参与创作
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_reference/">参考文献</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1311" class="md-nav__link">
13.1.1. &nbsp; 方法一:暴力搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1312" class="md-nav__link">
13.1.2. &nbsp; 方法二:记忆化搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1313" class="md-nav__link">
13.1.3. &nbsp; 方法三:动态规划
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_dynamic_programming/intro_to_dynamic_programming.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="131">13.1. &nbsp; 初探动态规划<a class="headerlink" href="#131" title="Permanent link">&para;</a></h1>
<p>「动态规划 Dynamic Programming」是一种通过将复杂问题分解为更简单的子问题的方式来求解问题的方法。它将一个问题分解为一系列更小的子问题并通过存储子问题的解来避免重复计算从而大幅提升时间效率。</p>
<p>在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。</p>
<div class="admonition question">
<p class="admonition-title">爬楼梯</p>
<p>给定一个共有 <span class="arithmatex">\(n\)</span> 阶的楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,请问有多少种方案可以爬到楼顶。</p>
</div>
<p>如下图所示,对于一个 <span class="arithmatex">\(3\)</span> 阶楼梯,共有 <span class="arithmatex">\(3\)</span> 种方案可以爬到楼顶。</p>
<p><img alt="爬到第 3 阶的方案数量" src="../intro_to_dynamic_programming.assets/climbing_stairs_example.png" /></p>
<p align="center"> Fig. 爬到第 3 阶的方案数量 </p>
<p>本题的目标是求解方案数量,<strong>我们可以考虑通过回溯来穷举所有可能性</strong>。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 <span class="arithmatex">\(1\)</span> 阶或 <span class="arithmatex">\(2\)</span> 阶,每当到达楼梯顶部时就将方案数量加 <span class="arithmatex">\(1\)</span> ,当越过楼梯顶部时就将其剪枝。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:11"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 回溯 */</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="c1">// 当爬到第 n 阶时,方案数量加 1</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">set</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="c1">// 遍历所有选择</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">Integer</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">choices</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="c1">// 剪枝:不允许越过第 n 阶</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="c1">// 尝试:做出选择,更新状态</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="c1">// 回退</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="p">}</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a><span class="cm">/* 爬楼梯:回溯 */</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsBacktrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Arrays</span><span class="p">.</span><span class="na">asList</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span><span class="w"> </span><span class="c1">// 可选择向上爬 1 或 2 阶</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 从第 0 阶开始爬</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 使用 res[0] 记录方案数量</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 回溯 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// 当爬到第 n 阶时,方案数量加 1</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 遍历所有选择</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="k">auto</span><span class="w"> </span><span class="o">&amp;</span><span class="n">choice</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">choices</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="c1">// 剪枝:不允许越过第 n 阶</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 尝试:做出选择,更新状态</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="c1">// 回退</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="p">}</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="cm">/* 爬楼梯:回溯 */</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsBacktrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">};</span><span class="w"> </span><span class="c1">// 可选择向上爬 1 或 2 阶</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 从第 0 阶开始爬</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="mi">0</span><span class="p">};</span><span class="w"> </span><span class="c1">// 使用 res[0] 记录方案数量</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">state</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;回溯&quot;&quot;&quot;</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="c1"># 当爬到第 n 阶时,方案数量加 1</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="k">if</span> <span class="n">state</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 遍历所有选择</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="k">for</span> <span class="n">choice</span> <span class="ow">in</span> <span class="n">choices</span><span class="p">:</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="c1"># 剪枝:不允许越过第 n 阶</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="k">if</span> <span class="n">state</span> <span class="o">+</span> <span class="n">choice</span> <span class="o">&gt;</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="k">break</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="c1"># 尝试:做出选择,更新状态</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span> <span class="n">state</span> <span class="o">+</span> <span class="n">choice</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">res</span><span class="p">)</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="c1"># 回退</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="k">def</span> <span class="nf">climbing_stairs_backtrack</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;爬楼梯:回溯&quot;&quot;&quot;</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a> <span class="n">choices</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="c1"># 可选择向上爬 1 或 2 阶</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a> <span class="n">state</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># 从第 0 阶开始爬</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># 使用 res[0] 记录方案数量</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">res</span><span class="p">)</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a> <span class="k">return</span> <span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 回溯 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="c1">// 当爬到第 n 阶时,方案数量加 1</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// 遍历所有选择</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">choices</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="c1">// 剪枝:不允许越过第 n 阶</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 尝试:做出选择,更新状态</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">choice</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="c1">// 回退</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="p">}</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="cm">/* 爬楼梯:回溯 */</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsBacktrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="p">};</span><span class="w"> </span><span class="c1">// 可选择向上爬 1 或 2 阶</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 从第 0 阶开始爬</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="p">};</span><span class="w"> </span><span class="c1">// 使用 res[0] 记录方案数量</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_backtrack.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsBacktrack</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h2 id="1311">13.1.1. &nbsp; 方法一:暴力搜索<a class="headerlink" href="#1311" title="Permanent link">&para;</a></h2>
<p>回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。</p>
<p>对于本题,我们可以尝试将问题拆解为更小的子问题。设爬到第 <span class="arithmatex">\(i\)</span> 阶共有 <span class="arithmatex">\(dp[i]\)</span> 种方案,那么 <span class="arithmatex">\(dp[i]\)</span> 就是原问题,其子问题包括:</p>
<div class="arithmatex">\[
dp[i-1] , dp[i-2] , \cdots , dp[2] , dp[1]
\]</div>
<p>由于每轮只能上 <span class="arithmatex">\(1\)</span> 阶或 <span class="arithmatex">\(2\)</span> 阶,因此当我们站在第 <span class="arithmatex">\(i\)</span> 阶楼梯上时,上一轮只可能站在第 <span class="arithmatex">\(i - 1\)</span> 阶或第 <span class="arithmatex">\(i - 2\)</span> 阶上,换句话说,我们只能从第 <span class="arithmatex">\(i -1\)</span> 阶或第 <span class="arithmatex">\(i - 2\)</span> 阶前往第 <span class="arithmatex">\(i\)</span> 阶。因此,<strong>爬到第 <span class="arithmatex">\(i - 1\)</span> 阶的方案数加上爬到第 <span class="arithmatex">\(i - 2\)</span> 阶的方案数就等于爬到第 <span class="arithmatex">\(i\)</span> 阶的方案数</strong>,即:</p>
<div class="arithmatex">\[
dp[i] = dp[i-1] + dp[i-2]
\]</div>
<p><img alt="方案数量递推关系" src="../intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png" /></p>
<p align="center"> Fig. 方案数量递推关系 </p>
<p>也就是说,在爬楼梯问题中,<strong>各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成</strong></p>
<p>我们可以基于此递推公式写出暴力搜索代码:以 <span class="arithmatex">\(dp[n]\)</span> 为起始点,<strong>从顶至底地将一个较大问题拆解为两个较小问题的和</strong>,直至到达最小子问题 <span class="arithmatex">\(dp[1]\)</span><span class="arithmatex">\(dp[2]\)</span> 时返回。其中,最小子问题的解 <span class="arithmatex">\(dp[1] = 1\)</span> , <span class="arithmatex">\(dp[2] = 2\)</span> 是已知的,代表爬到第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶分别有 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 种方案。</p>
<p>观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.java</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 搜索 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="p">}</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="cm">/* 爬楼梯:搜索 */</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFS</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.cpp</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="cm">/* 搜索 */</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="p">}</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="cm">/* 爬楼梯:搜索 */</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFS</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.py</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="k">def</span> <span class="nf">dfs</span><span class="p">(</span><span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;搜索&quot;&quot;&quot;</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a> <span class="c1"># 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a> <span class="c1"># dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a> <span class="n">count</span> <span class="o">=</span> <span class="n">dfs</span><span class="p">(</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">dfs</span><span class="p">(</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a> <span class="k">return</span> <span class="n">count</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="k">def</span> <span class="nf">climbing_stairs_dfs</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;爬楼梯:搜索&quot;&quot;&quot;</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a> <span class="k">return</span> <span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.go</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.js</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.ts</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.c</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.cs</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 搜索 */</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="p">}</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="cm">/* 爬楼梯:搜索 */</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFS</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a>
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.zig</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs.dart</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFS</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>下图展示了暴力搜索形成的递归树。对于问题 <span class="arithmatex">\(dp[n]\)</span> ,其递归树的深度为 <span class="arithmatex">\(n\)</span> ,时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span> 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 <span class="arithmatex">\(n\)</span> ,则会陷入漫长的等待之中。</p>
<p><img alt="爬楼梯对应递归树" src="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png" /></p>
<p align="center"> Fig. 爬楼梯对应递归树 </p>
<p>实际上,<strong>指数阶的时间复杂度是由于「重叠子问题」导致的</strong>。例如,问题 <span class="arithmatex">\(dp[9]\)</span> 被分解为子问题 <span class="arithmatex">\(dp[8]\)</span><span class="arithmatex">\(dp[7]\)</span> ,问题 <span class="arithmatex">\(dp[8]\)</span> 被分解为子问题 <span class="arithmatex">\(dp[7]\)</span><span class="arithmatex">\(dp[6]\)</span> ,两者都包含子问题 <span class="arithmatex">\(dp[7]\)</span> ,而子问题中又包含更小的重叠子问题,子子孙孙无穷尽也,绝大部分计算资源都浪费在这些重叠的问题上。</p>
<h2 id="1312">13.1.2. &nbsp; 方法二:记忆化搜索<a class="headerlink" href="#1312" title="Permanent link">&para;</a></h2>
<p>为了提升算法效率,<strong>我们希望所有的重叠子问题都只被计算一次</strong>。具体来说,考虑借助一个数组 <code>mem</code> 来记录每个子问题的解,并在搜索过程中这样做:</p>
<ul>
<li>当首次计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们将其记录至 <code>mem[i]</code> ,以便之后使用;</li>
<li>当再次需要计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们便可直接从 <code>mem[i]</code> 中获取结果,从而将重叠子问题剪枝;</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.java</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 记忆化搜索 */</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="c1">// 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="c1">// 记录 dp[i]</span>
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="p">}</span>
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a>
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="cm">/* 爬楼梯:记忆化搜索 */</span>
<a id="__codelineno-22-17" name="__codelineno-22-17" href="#__codelineno-22-17"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-18" name="__codelineno-22-18" href="#__codelineno-22-18"></a><span class="w"> </span><span class="c1">// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录</span>
<a id="__codelineno-22-19" name="__codelineno-22-19" href="#__codelineno-22-19"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">mem</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-22-20" name="__codelineno-22-20" href="#__codelineno-22-20"></a><span class="w"> </span><span class="n">Arrays</span><span class="p">.</span><span class="na">fill</span><span class="p">(</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-22-21" name="__codelineno-22-21" href="#__codelineno-22-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-22-22" name="__codelineno-22-22" href="#__codelineno-22-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.cpp</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 记忆化搜索 */</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="c1">// 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="c1">// 记录 dp[i]</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="p">}</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="cm">/* 爬楼梯:记忆化搜索 */</span>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="w"> </span><span class="c1">// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录</span>
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">mem</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">-1</span><span class="p">);</span>
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.py</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="k">def</span> <span class="nf">dfs</span><span class="p">(</span><span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">mem</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;记忆化搜索&quot;&quot;&quot;</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a> <span class="c1"># 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a> <span class="c1"># 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a> <span class="k">if</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a> <span class="c1"># dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a> <span class="n">count</span> <span class="o">=</span> <span class="n">dfs</span><span class="p">(</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">mem</span><span class="p">)</span> <span class="o">+</span> <span class="n">dfs</span><span class="p">(</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">,</span> <span class="n">mem</span><span class="p">)</span>
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a> <span class="c1"># 记录 dp[i]</span>
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">count</span>
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a> <span class="k">return</span> <span class="n">count</span>
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a>
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a><span class="k">def</span> <span class="nf">climbing_stairs_dfs_mem</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;爬楼梯:记忆化搜索&quot;&quot;&quot;</span>
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a> <span class="c1"># mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录</span>
<a id="__codelineno-24-18" name="__codelineno-24-18" href="#__codelineno-24-18"></a> <span class="n">mem</span> <span class="o">=</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-24-19" name="__codelineno-24-19" href="#__codelineno-24-19"></a> <span class="k">return</span> <span class="n">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">mem</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.go</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.js</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.ts</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">dfs</span><span class="p">}</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.c</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.cs</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 记忆化搜索 */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">)</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dfs</span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 记录 dp[i]</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="p">}</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="cm">/* 爬楼梯:记忆化搜索 */</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="c1">// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">mem</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="n">Array</span><span class="p">.</span><span class="n">Fill</span><span class="p">(</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">dfs</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">);</span>
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.swift</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.zig</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.dart</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">dfs</span><span class="p">}</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>观察下图,<strong>经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 <span class="arithmatex">\(O(n)\)</span></strong> ,这是一个巨大的飞跃。实际上,如果不考虑递归带来的额外开销,记忆化搜索解法已经几乎等同于动态规划解法的时间效率。</p>
<p><img alt="记忆化搜索对应递归树" src="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png" /></p>
<p align="center"> Fig. 记忆化搜索对应递归树 </p>
<h2 id="1313">13.1.3. &nbsp; 方法三:动态规划<a class="headerlink" href="#1313" title="Permanent link">&para;</a></h2>
<p><strong>记忆化搜索是一种“从顶至底”的方法</strong>:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点);最终通过回溯将子问题的解逐层收集,得到原问题的解。</p>
<p><strong>我们也可以直接“从底至顶”进行求解</strong>,得到标准的动态规划解法:从最小子问题开始,迭代地求解较大子问题,直至得到原问题的解。</p>
<p>由于动态规划不包含回溯过程,因此无需使用递归,而可以直接基于递推实现。我们初始化一个数组 <code>dp</code> 来存储子问题的解,从最小子问题开始,逐步求解较大子问题。在以下代码中,数组 <code>dp</code> 起到了记忆化搜索中数组 <code>mem</code> 相同的记录作用。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:11"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">Java</label><label for="__tabbed_4_2">C++</label><label for="__tabbed_4_3">Python</label><label for="__tabbed_4_4">Go</label><label for="__tabbed_4_5">JavaScript</label><label for="__tabbed_4_6">TypeScript</label><label for="__tabbed_4_7">C</label><label for="__tabbed_4_8">C#</label><label for="__tabbed_4_9">Swift</label><label for="__tabbed_4_10">Zig</label><label for="__tabbed_4_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.java</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="cm">/* 爬楼梯:动态规划 */</span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-33-15" name="__codelineno-33-15" href="#__codelineno-33-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.cpp</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 爬楼梯:动态规划 */</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">];</span>
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.py</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="k">def</span> <span class="nf">climbing_stairs_dp</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;爬楼梯:动态规划&quot;&quot;&quot;</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a> <span class="k">return</span> <span class="n">n</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a> <span class="c1"># 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a> <span class="c1"># 初始状态:预设最小子问题的解</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a> <span class="c1"># 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">]</span>
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.go</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.c</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.cs</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 爬楼梯:动态规划 */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">];</span>
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.swift</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.zig</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.dart</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDP</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数 <span class="arithmatex">\(i\)</span><strong>动态规划的常用术语包括</strong></p>
<ul>
<li>将数组 <code>dp</code> 称为「<span class="arithmatex">\(dp\)</span> 表」,<span class="arithmatex">\(dp[i]\)</span> 表示状态 <span class="arithmatex">\(i\)</span> 对应子问题的解;</li>
<li>将最小子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」;</li>
<li>将递推公式 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 称为「状态转移方程」;</li>
</ul>
<p><img alt="爬楼梯的动态规划过程" src="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" /></p>
<p align="center"> Fig. 爬楼梯的动态规划过程 </p>
<p>细心的你可能发现,<strong>由于 <span class="arithmatex">\(dp[i]\)</span> 只与 <span class="arithmatex">\(dp[i-1]\)</span><span class="arithmatex">\(dp[i-2]\)</span> 有关,因此我们无需使用一个数组 <code>dp</code> 来存储所有子问题的解</strong>,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 <code>dp</code> 占用的空间,因此空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:11"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.java</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="cm">/* 爬楼梯:状态压缩后的动态规划 */</span>
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDPComp</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-44-8" name="__codelineno-44-8" href="#__codelineno-44-8"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-44-9" name="__codelineno-44-9" href="#__codelineno-44-9"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-44-10" name="__codelineno-44-10" href="#__codelineno-44-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-11" name="__codelineno-44-11" href="#__codelineno-44-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-44-12" name="__codelineno-44-12" href="#__codelineno-44-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.cpp</span><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="cm">/* 爬楼梯:状态压缩后的动态规划 */</span>
<a id="__codelineno-45-2" name="__codelineno-45-2" href="#__codelineno-45-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDPComp</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-3" name="__codelineno-45-3" href="#__codelineno-45-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-45-4" name="__codelineno-45-4" href="#__codelineno-45-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-45-5" name="__codelineno-45-5" href="#__codelineno-45-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-45-6" name="__codelineno-45-6" href="#__codelineno-45-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-7" name="__codelineno-45-7" href="#__codelineno-45-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-45-8" name="__codelineno-45-8" href="#__codelineno-45-8"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-45-9" name="__codelineno-45-9" href="#__codelineno-45-9"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-45-10" name="__codelineno-45-10" href="#__codelineno-45-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-11" name="__codelineno-45-11" href="#__codelineno-45-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-45-12" name="__codelineno-45-12" href="#__codelineno-45-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.py</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="k">def</span> <span class="nf">climbing_stairs_dp_comp</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;爬楼梯:状态压缩后的动态规划&quot;&quot;&quot;</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a> <span class="k">return</span> <span class="n">n</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a> <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a> <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="p">,</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a> <span class="k">return</span> <span class="n">b</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.go</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.c</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.cs</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="cm">/* 爬楼梯:状态压缩后的动态规划 */</span>
<a id="__codelineno-51-2" name="__codelineno-51-2" href="#__codelineno-51-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDPComp</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-51-3" name="__codelineno-51-3" href="#__codelineno-51-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
<a id="__codelineno-51-4" name="__codelineno-51-4" href="#__codelineno-51-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-51-5" name="__codelineno-51-5" href="#__codelineno-51-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-51-6" name="__codelineno-51-6" href="#__codelineno-51-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-51-7" name="__codelineno-51-7" href="#__codelineno-51-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-51-8" name="__codelineno-51-8" href="#__codelineno-51-8"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-51-9" name="__codelineno-51-9" href="#__codelineno-51-9"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-51-10" name="__codelineno-51-10" href="#__codelineno-51-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-51-11" name="__codelineno-51-11" href="#__codelineno-51-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<a id="__codelineno-51-12" name="__codelineno-51-12" href="#__codelineno-51-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.swift</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.zig</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.dart</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><strong>我们将这种空间优化技巧称为「状态压缩」</strong>。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。</p>
<p>总的看来,子问题分解是一种通用的算法思路,在分治算法、动态规划、回溯算法中各有特点:</p>
<ul>
<li>分治算法将原问题划分为几个独立的子问题,然后递归解决子问题,最后合并子问题的解得到原问题的解。例如,归并排序将长数组不断划分为两个短子数组,再将排序好的子数组合并为排序好的长数组。</li>
<li>动态规划也是将原问题分解为多个子问题,但与分治算法的主要区别是,<strong>动态规划中的子问题往往不是相互独立的</strong>,原问题的解依赖于子问题的解,而子问题的解又依赖于更小的子问题的解。因此,动态规划通常会引入记忆化,保存已经解决的子问题的解,避免重复计算。</li>
<li>回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之后的剩余问题看作为一个子问题。</li>
</ul>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../" class="md-footer__link md-footer__link--prev" aria-label="上一页: 13. &amp;nbsp; 动态规划" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
13. &nbsp; 动态规划
</div>
</div>
</a>
<a href="../dp_problem_features/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.2. &amp;nbsp; DP 问题特性New" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
13.2. &nbsp; DP 问题特性New
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208ed371.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.fac441b0.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>