You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/java/chapter_dynamic_programming/knapsack.java

117 lines
4.0 KiB

/**
* File: knapsack.java
* Created Time: 2023-07-10
* Author: Krahets (krahets@163.com)
*/
package chapter_dynamic_programming;
import java.util.Arrays;
public class knapsack {
/* 0-1 背包:暴力搜索 */
static int knapsackDFS(int[] wgt, int[] val, int i, int c) {
// 若已选完所有物品或背包无剩余容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超过背包容量,则只能选择不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回两种方案中价值更大的那一个
return Math.max(no, yes);
}
/* 0-1 背包:记忆化搜索 */
static int knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {
// 若已选完所有物品或背包无剩余容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有记录,则直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超过背包容量,则只能选择不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = Math.max(no, yes);
return mem[i][c];
}
/* 0-1 背包:动态规划 */
static int knapsackDP(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[][] dp = new int[n + 1][cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:空间优化后的动态规划 */
static int knapsackDPComp(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[] dp = new int[cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
// 倒序遍历
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不选和选物品 i 这两种方案的较大值
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
public static void main(String[] args) {
int[] wgt = { 10, 20, 30, 40, 50 };
int[] val = { 50, 120, 150, 210, 240 };
int cap = 50;
int n = wgt.length;
// 暴力搜索
int res = knapsackDFS(wgt, val, n, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
// 记忆化搜索
int[][] mem = new int[n + 1][cap + 1];
for (int[] row : mem) {
Arrays.fill(row, -1);
}
res = knapsackDFSMem(wgt, val, mem, n, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
// 动态规划
res = knapsackDP(wgt, val, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
// 空间优化后的动态规划
res = knapsackDPComp(wgt, val, cap);
System.out.println("不超过背包容量的最大物品价值为 " + res);
}
}