You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2.1 KiB
2.1 KiB
小结
算法效率评估
- 时间效率和空间效率是算法性能的两个重要的评价维度。
- 我们可以通过实际测试来评估算法效率,但难以排除测试环境的干扰,并且非常耗费计算资源。
- 复杂度分析克服了实际测试的弊端,分析结果适用于所有运行平台,并且可以体现不同数据大小下的算法效率。
时间复杂度
- 时间复杂度统计算法运行时间随着数据量变大时的增长趋势,可以有效评估算法效率,但在某些情况下可能失效,比如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣性。
- 最差时间复杂度使用大
O
符号表示,即函数渐近上界,其反映当n
趋于正无穷时,T(n)
处于何种增长级别。 - 推算时间复杂度分为两步,首先统计计算操作数量,再判断渐近上界。
- 常见时间复杂度从小到大排列有
O(1)
,O(\log n)
,O(n)
,O(n \log n)
,O(n^2)
,O(2^n)
,O(n!)
。 - 某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。时间复杂度分为最差时间复杂度和最佳时间复杂度,后者几乎不用,因为输入数据需要满足苛刻的条件才能达到最佳情况。
- 平均时间复杂度可以反映在随机数据输入下的算法效率,最贴合实际使用情况下的算法性能。计算平均时间复杂度需要统计输入数据的分布,以及综合后的数学期望。
空间复杂度
- 与时间复杂度的定义类似,空间复杂度统计算法占用空间随着数据量变大时的增长趋势。
- 算法运行中相关内存空间可分为输入空间、暂存空间、输出空间。通常情况下,输入空间不计入空间复杂度计算。暂存空间可分为指令空间、数据空间、栈帧空间,其中栈帧空间一般在递归函数中才会影响到空间复杂度。
- 我们一般只关心最差空间复杂度,即统计算法在最差输入数据和最差运行时间点下的空间复杂度。
- 常见空间复杂度从小到大排列有
O(1)
,O(\log n)
,O(n)
,O(n^2)
,O(2^n)
。