You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/kotlin/chapter_tree/avl_tree.kt

208 lines
6.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
* File: avl_tree.kt
* Created Time: 2024-01-25
* Author: curtishd (1023632660@qq.com)
*/
package chapter_tree
import utils.TreeNode
import utils.printTree
import kotlin.math.max
/* AVL 树 */
class AVLTree {
var root: TreeNode? = null // 根节点
/* 获取节点高度 */
fun height(node: TreeNode?): Int {
// 空节点高度为 -1 ,叶节点高度为 0
return node?.height ?: -1
}
/* 更新节点高度 */
private fun updateHeight(node: TreeNode?) {
// 节点高度等于最高子树高度 + 1
node?.height = (max(height(node?.left).toDouble(), height(node?.right).toDouble()) + 1).toInt()
}
/* 获取平衡因子 */
fun balanceFactor(node: TreeNode?): Int {
// 空节点平衡因子为 0
if (node == null) return 0
// 节点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right)
}
/* 右旋操作 */
private fun rightRotate(node: TreeNode?): TreeNode {
val child = node!!.left
val grandChild = child!!.right
// 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grandChild
// 更新节点高度
updateHeight(node)
updateHeight(child)
// 返回旋转后子树的根节点
return child
}
/* 左旋操作 */
private fun leftRotate(node: TreeNode?): TreeNode {
val child = node!!.right
val grandChild = child!!.left
// 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grandChild
// 更新节点高度
updateHeight(node)
updateHeight(child)
// 返回旋转后子树的根节点
return child
}
/* 执行旋转操作,使该子树重新恢复平衡 */
private fun rotate(node: TreeNode): TreeNode {
// 获取节点 node 的平衡因子
val balanceFactor = balanceFactor(node)
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node)
} else {
// 先左旋后右旋
node.left = leftRotate(node.left)
return rightRotate(node)
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node)
} else {
// 先右旋后左旋
node.right = rightRotate(node.right)
return leftRotate(node)
}
}
// 平衡树,无须旋转,直接返回
return node
}
/* 插入节点 */
fun insert(value: Int) {
root = insertHelper(root, value)
}
/* 递归插入节点(辅助方法) */
private fun insertHelper(n: TreeNode?, value: Int): TreeNode {
if (n == null)
return TreeNode(value)
var node = n
/* 1. 查找插入位置并插入节点 */
if (value < node.value) node.left = insertHelper(node.left, value)
else if (value > node.value) node.right = insertHelper(node.right, value)
else return node // 重复节点不插入,直接返回
updateHeight(node) // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node)
// 返回子树的根节点
return node
}
/* 删除节点 */
fun remove(value: Int) {
root = removeHelper(root, value)
}
/* 递归删除节点(辅助方法) */
private fun removeHelper(n: TreeNode?, value: Int): TreeNode? {
var node = n ?: return null
/* 1. 查找节点并删除 */
if (value < node.value) node.left = removeHelper(node.left, value)
else if (value > node.value) node.right = removeHelper(node.right, value)
else {
if (node.left == null || node.right == null) {
val child = if (node.left != null) node.left else node.right
// 子节点数量 = 0 ,直接删除 node 并返回
if (child == null) return null
else node = child
} else {
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
var temp = node.right
while (temp!!.left != null) {
temp = temp.left
}
node.right = removeHelper(node.right, temp.value)
node.value = temp.value
}
}
updateHeight(node) // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node)
// 返回子树的根节点
return node
}
/* 查找节点 */
fun search(value: Int): TreeNode? {
var cur = root
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
cur = if (cur.value < value) cur.right!!
else (if (cur.value > value) cur.left
else break)!!
}
// 返回目标节点
return cur
}
}
fun testInsert(tree: AVLTree, value: Int) {
tree.insert(value)
println("\n插入节点 $valueAVL 树为")
printTree(tree.root)
}
fun testRemove(tree: AVLTree, value: Int) {
tree.remove(value)
println("\n删除节点 $valueAVL 树为")
printTree(tree.root)
}
/* Driver Code */
fun main() {
/* 初始化空 AVL 树 */
val avlTree = AVLTree()
/* 插入节点 */
// 请关注插入节点后AVL 树是如何保持平衡的
testInsert(avlTree, 1)
testInsert(avlTree, 2)
testInsert(avlTree, 3)
testInsert(avlTree, 4)
testInsert(avlTree, 5)
testInsert(avlTree, 8)
testInsert(avlTree, 7)
testInsert(avlTree, 9)
testInsert(avlTree, 10)
testInsert(avlTree, 6)
/* 插入重复节点 */
testInsert(avlTree, 7)
/* 删除节点 */
// 请关注删除节点后AVL 树是如何保持平衡的
testRemove(avlTree, 8) // 删除度为 0 的节点
testRemove(avlTree, 5) // 删除度为 1 的节点
testRemove(avlTree, 4) // 删除度为 2 的节点
/* 查询节点 */
val node = avlTree.search(7)
println("\n 查找到的节点对象为 $node,节点值 = ${node?.value}")
}