You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/chapter_tree/binary_search_tree/index.html

4536 lines
194 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/en/chapter_tree/binary_search_tree/">
<link rel="prev" href="../array_representation_of_tree/">
<link rel="next" href="../avl_tree/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
<title>7.4 Binary Search tree - Hello Algo</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#74-binary-search-tree" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<button class="md-banner__button md-icon" aria-label="Don't show this again">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>Welcome to contribute to Chinese-to-English translation! Please visit <a href="https://github.com/krahets/hello-algo/issues/914">#914</a> for more details.</span>
</div>
</div>
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href="../.." title="Hello Algo" class="md-header__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello Algo
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
7.4 Binary Search tree
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="Dark mode" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="Dark mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="Light mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Light mode" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="Select language">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/chapter_tree/binary_search_tree/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/chapter_tree/binary_search_tree/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/chapter_tree/binary_search_tree/" hreflang="en" class="md-select__link">
English
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello Algo" class="md-nav__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello Algo
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
<span class="md-ellipsis">
Before starting
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
Before starting
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
Chapter 0. Preface
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
Chapter 0. Preface
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 About this book
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 How to read
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
Chapter 1. Encounter with algorithms
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
Chapter 1. Encounter with algorithms
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 Algorithms are everywhere
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 What is an algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
Chapter 2. Complexity analysis
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
Chapter 2. Complexity analysis
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 Algorithm efficiency assessment
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 Iteration and recursion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 Time complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 Space complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
Chapter 3. Data structures
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
Chapter 3. Data structures
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 Classification of data structures
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 Basic data types
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 Number encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 Character encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
Chapter 4. Array and linked list
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
Chapter 4. Array and linked list
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 Array
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 Linked list
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 List
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 Memory and cache *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
Chapter 5. Stack and queue
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
Chapter 5. Stack and queue
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 Stack
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 Queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 Double-ended queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
Chapter 6. Hash table
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
Chapter 6. Hash table
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 Hash table
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 Hash collision
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 Hash algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
Chapter 7. Tree
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
Chapter 7. Tree
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 Binary tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 Binary tree traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 Array Representation of tree
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
7.4 Binary Search tree
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
7.4 Binary Search tree
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#741-operations-on-a-binary-search-tree" class="md-nav__link">
<span class="md-ellipsis">
7.4.1 &nbsp; Operations on a binary search tree
</span>
</a>
<nav class="md-nav" aria-label="7.4.1   Operations on a binary search tree">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1-searching-for-a-node" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Searching for a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-inserting-a-node" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Inserting a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-removing-a-node" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Removing a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4-in-order-traversal-is-ordered" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; In-order traversal is ordered
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#742-efficiency-of-binary-search-trees" class="md-nav__link">
<span class="md-ellipsis">
7.4.2 &nbsp; Efficiency of binary search trees
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#743-common-applications-of-binary-search-trees" class="md-nav__link">
<span class="md-ellipsis">
7.4.3 &nbsp; Common applications of binary search trees
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 AVL tree *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
Chapter 8. Heap
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
Chapter 8. Heap
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 Heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 Building a heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 Top-k problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
Chapter 9. Graph
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
Chapter 9. Graph
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 Graph
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 Basic graph operations
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 Graph traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
Chapter 10. Searching
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
Chapter 10. Searching
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 Binary search
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 Binary search insertion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 Binary search boundaries
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 Hashing optimization strategies
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 Search algorithms revisited
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
Chapter 11. Sorting
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
Chapter 11. Sorting
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 Sorting algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 Selection sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 Bubble sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 Insertion sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 Quick sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 Merge sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 Heap sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 Bucket sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 Counting sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 Radix sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
Chapter 12. Divide and conquer
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
Chapter 12. Divide and conquer
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 Divide and conquer algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 Divide and conquer search strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 Building binary tree problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 Tower of Hanoi Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
Chapter 13. Backtracking
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
Chapter 13. Backtracking
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 Backtracking algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 Permutation problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 Subset sum problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 n queens problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
Chapter 14. Dynamic programming
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
Chapter 14. Dynamic programming
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 Introduction to dynamic programming
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 Characteristics of DP problems
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 DP problem-solving approach¶
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 0-1 Knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 Unbounded knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 Edit distance problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
Chapter 15. Greedy
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
Chapter 15. Greedy
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 Greedy algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 Fractional knapsack problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 Maximum capacity problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 Maximum product cutting problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
Chapter 16. Appendix
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
Chapter 16. Appendix
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 Installation
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 Contributing
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 Terminology
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
<span class="md-ellipsis">
References
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
References
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#741-operations-on-a-binary-search-tree" class="md-nav__link">
<span class="md-ellipsis">
7.4.1 &nbsp; Operations on a binary search tree
</span>
</a>
<nav class="md-nav" aria-label="7.4.1   Operations on a binary search tree">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1-searching-for-a-node" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Searching for a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-inserting-a-node" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Inserting a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-removing-a-node" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Removing a node
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4-in-order-traversal-is-ordered" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; In-order traversal is ordered
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#742-efficiency-of-binary-search-trees" class="md-nav__link">
<span class="md-ellipsis">
7.4.2 &nbsp; Efficiency of binary search trees
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#743-common-applications-of-binary-search-trees" class="md-nav__link">
<span class="md-ellipsis">
7.4.3 &nbsp; Common applications of binary search trees
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/en/docs/chapter_tree/binary_search_tree.md"
title="Edit this page"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="74-binary-search-tree">7.4 &nbsp; Binary search tree<a class="headerlink" href="#74-binary-search-tree" title="Permanent link">&para;</a></h1>
<p>As shown in Figure 7-16, a <u>binary search tree</u> satisfies the following conditions.</p>
<ol>
<li>For the root node, the value of all nodes in the left subtree <span class="arithmatex">\(&lt;\)</span> the value of the root node <span class="arithmatex">\(&lt;\)</span> the value of all nodes in the right subtree.</li>
<li>The left and right subtrees of any node are also binary search trees, i.e., they satisfy condition <code>1.</code> as well.</li>
</ol>
<p><a class="glightbox" href="../binary_search_tree.assets/binary_search_tree.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Binary search tree" class="animation-figure" src="../binary_search_tree.assets/binary_search_tree.png" /></a></p>
<p align="center"> Figure 7-16 &nbsp; Binary search tree </p>
<h2 id="741-operations-on-a-binary-search-tree">7.4.1 &nbsp; Operations on a binary search tree<a class="headerlink" href="#741-operations-on-a-binary-search-tree" title="Permanent link">&para;</a></h2>
<p>We encapsulate the binary search tree as a class <code>BinarySearchTree</code> and declare a member variable <code>root</code>, pointing to the tree's root node.</p>
<h3 id="1-searching-for-a-node">1. &nbsp; Searching for a node<a class="headerlink" href="#1-searching-for-a-node" title="Permanent link">&para;</a></h3>
<p>Given a target node value <code>num</code>, one can search according to the properties of the binary search tree. As shown in Figure 7-17, we declare a node <code>cur</code> and start from the binary tree's root node <code>root</code>, looping to compare the size relationship between the node value <code>cur.val</code> and <code>num</code>.</p>
<ul>
<li>If <code>cur.val &lt; num</code>, it means the target node is in <code>cur</code>'s right subtree, thus execute <code>cur = cur.right</code>.</li>
<li>If <code>cur.val &gt; num</code>, it means the target node is in <code>cur</code>'s left subtree, thus execute <code>cur = cur.left</code>.</li>
<li>If <code>cur.val = num</code>, it means the target node is found, exit the loop and return the node.</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="1:4"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">&lt;1&gt;</label><label for="__tabbed_1_2">&lt;2&gt;</label><label for="__tabbed_1_3">&lt;3&gt;</label><label for="__tabbed_1_4">&lt;4&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Example of searching for a node in a binary search tree" class="animation-figure" src="../binary_search_tree.assets/bst_search_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step2" class="animation-figure" src="../binary_search_tree.assets/bst_search_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step3" class="animation-figure" src="../binary_search_tree.assets/bst_search_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_search_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_search_step4" class="animation-figure" src="../binary_search_tree.assets/bst_search_step4.png" /></a></p>
</div>
</div>
</div>
<p align="center"> Figure 7-17 &nbsp; Example of searching for a node in a binary search tree </p>
<p>The search operation in a binary search tree works on the same principle as the binary search algorithm, eliminating half of the possibilities in each round. The number of loops is at most the height of the binary tree. When the binary tree is balanced, it uses <span class="arithmatex">\(O(\log n)\)</span> time. Example code is as follows:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:14"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><input id="__tabbed_2_13" name="__tabbed_2" type="radio" /><input id="__tabbed_2_14" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Kotlin</label><label for="__tabbed_2_13">Ruby</label><label for="__tabbed_2_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">search</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">TreeNode</span> <span class="o">|</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;Search node&quot;&quot;&quot;</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">cur</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="c1"># Loop find, break after passing leaf nodes</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># Target node is in cur&#39;s right subtree</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a> <span class="c1"># Target node is in cur&#39;s left subtree</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a> <span class="k">elif</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&gt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="c1"># Found target node, break loop</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a> <span class="k">break</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a> <span class="k">return</span> <span class="n">cur</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* Search node */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="nf">search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// Target node is in cur&#39;s right subtree</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// Target node is in cur&#39;s left subtree</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="c1">// Found target node, break loop</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// Return target node</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* Search node */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="n">TreeNode</span><span class="w"> </span><span class="nf">search</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">;</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="c1">// Target node is in cur&#39;s right subtree</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="c1">// Target node is in cur&#39;s left subtree</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="c1">// Found target node, break loop</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="c1">// Return target node</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">Search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{</span><span class="nx">binarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="no">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">search</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="2-inserting-a-node">2. &nbsp; Inserting a node<a class="headerlink" href="#2-inserting-a-node" title="Permanent link">&para;</a></h3>
<p>Given an element <code>num</code> to be inserted, to maintain the property of the binary search tree "left subtree &lt; root node &lt; right subtree," the insertion operation proceeds as shown in Figure 7-18.</p>
<ol>
<li><strong>Finding the insertion position</strong>: Similar to the search operation, start from the root node and loop downwards according to the size relationship between the current node value and <code>num</code> until passing through the leaf node (traversing to <code>None</code>) then exit the loop.</li>
<li><strong>Insert the node at that position</strong>: Initialize the node <code>num</code> and place it where <code>None</code> was.</li>
</ol>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_insert.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Inserting a node into a binary search tree" class="animation-figure" src="../binary_search_tree.assets/bst_insert.png" /></a></p>
<p align="center"> Figure 7-18 &nbsp; Inserting a node into a binary search tree </p>
<p>In the code implementation, note the following two points.</p>
<ul>
<li>The binary search tree does not allow duplicate nodes; otherwise, it will violate its definition. Therefore, if the node to be inserted already exists in the tree, the insertion is not performed, and it directly returns.</li>
<li>To perform the insertion operation, we need to use the node <code>pre</code> to save the node from the last loop. This way, when traversing to <code>None</code>, we can get its parent node, thus completing the node insertion operation.</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="3:14"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><input id="__tabbed_3_13" name="__tabbed_3" type="radio" /><input id="__tabbed_3_14" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Kotlin</label><label for="__tabbed_3_13">Ruby</label><label for="__tabbed_3_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="k">def</span> <span class="nf">insert</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;Insert node&quot;&quot;&quot;</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a> <span class="c1"># If tree is empty, initialize root node</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a> <span class="k">return</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a> <span class="c1"># Loop find, break after passing leaf nodes</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a> <span class="n">cur</span><span class="p">,</span> <span class="n">pre</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">,</span> <span class="kc">None</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a> <span class="c1"># Found duplicate node, thus return</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">==</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a> <span class="k">return</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a> <span class="n">pre</span> <span class="o">=</span> <span class="n">cur</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a> <span class="c1"># Insertion position is in cur&#39;s right subtree</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a> <span class="c1"># Insertion position is in cur&#39;s left subtree</span>
<a id="__codelineno-14-18" name="__codelineno-14-18" href="#__codelineno-14-18"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-14-19" name="__codelineno-14-19" href="#__codelineno-14-19"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-14-20" name="__codelineno-14-20" href="#__codelineno-14-20"></a> <span class="c1"># Insert node</span>
<a id="__codelineno-14-21" name="__codelineno-14-21" href="#__codelineno-14-21"></a> <span class="n">node</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-14-22" name="__codelineno-14-22" href="#__codelineno-14-22"></a> <span class="k">if</span> <span class="n">pre</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-14-23" name="__codelineno-14-23" href="#__codelineno-14-23"></a> <span class="n">pre</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">node</span>
<a id="__codelineno-14-24" name="__codelineno-14-24" href="#__codelineno-14-24"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-14-25" name="__codelineno-14-25" href="#__codelineno-14-25"></a> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">node</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* Insert node */</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="c1">// If tree is empty, initialize root node</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">;</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="c1">// Found duplicate node, thus return</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="c1">// Insertion position is in cur&#39;s right subtree</span>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-15-18" name="__codelineno-15-18" href="#__codelineno-15-18"></a><span class="w"> </span><span class="c1">// Insertion position is in cur&#39;s left subtree</span>
<a id="__codelineno-15-19" name="__codelineno-15-19" href="#__codelineno-15-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-15-20" name="__codelineno-15-20" href="#__codelineno-15-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-15-21" name="__codelineno-15-21" href="#__codelineno-15-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-22" name="__codelineno-15-22" href="#__codelineno-15-22"></a><span class="w"> </span><span class="c1">// Insert node</span>
<a id="__codelineno-15-23" name="__codelineno-15-23" href="#__codelineno-15-23"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-15-24" name="__codelineno-15-24" href="#__codelineno-15-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-15-25" name="__codelineno-15-25" href="#__codelineno-15-25"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-15-26" name="__codelineno-15-26" href="#__codelineno-15-26"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-15-27" name="__codelineno-15-27" href="#__codelineno-15-27"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-15-28" name="__codelineno-15-28" href="#__codelineno-15-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* Insert node */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">insert</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// If tree is empty, initialize root node</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// Found duplicate node, thus return</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// Insertion position is in cur&#39;s right subtree</span>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// Insertion position is in cur&#39;s left subtree</span>
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-22" name="__codelineno-16-22" href="#__codelineno-16-22"></a><span class="w"> </span><span class="c1">// Insert node</span>
<a id="__codelineno-16-23" name="__codelineno-16-23" href="#__codelineno-16-23"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">node</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="n">num</span><span class="p">);</span>
<a id="__codelineno-16-24" name="__codelineno-16-24" href="#__codelineno-16-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-16-25" name="__codelineno-16-25" href="#__codelineno-16-25"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-16-26" name="__codelineno-16-26" href="#__codelineno-16-26"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-16-27" name="__codelineno-16-27" href="#__codelineno-16-27"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">node</span><span class="p">;</span>
<a id="__codelineno-16-28" name="__codelineno-16-28" href="#__codelineno-16-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">Insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{</span><span class="nx">binarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="bp">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="no">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">insert</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>Similar to searching for a node, inserting a node uses <span class="arithmatex">\(O(\log n)\)</span> time.</p>
<h3 id="3-removing-a-node">3. &nbsp; Removing a node<a class="headerlink" href="#3-removing-a-node" title="Permanent link">&para;</a></h3>
<p>First, find the target node in the binary tree, then remove it. Similar to inserting a node, we need to ensure that after the removal operation is completed, the property of the binary search tree "left subtree &lt; root node &lt; right subtree" is still satisfied. Therefore, based on the number of child nodes of the target node, we divide it into 0, 1, and 2 cases, performing the corresponding node removal operations.</p>
<p>As shown in Figure 7-19, when the degree of the node to be removed is <span class="arithmatex">\(0\)</span>, it means the node is a leaf node, and it can be directly removed.</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Removing a node in a binary search tree (degree 0)" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case1.png" /></a></p>
<p align="center"> Figure 7-19 &nbsp; Removing a node in a binary search tree (degree 0) </p>
<p>As shown in Figure 7-20, when the degree of the node to be removed is <span class="arithmatex">\(1\)</span>, replacing the node to be removed with its child node is sufficient.</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Removing a node in a binary search tree (degree 1)" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case2.png" /></a></p>
<p align="center"> Figure 7-20 &nbsp; Removing a node in a binary search tree (degree 1) </p>
<p>When the degree of the node to be removed is <span class="arithmatex">\(2\)</span>, we cannot remove it directly, but need to use a node to replace it. To maintain the property of the binary search tree "left subtree <span class="arithmatex">\(&lt;\)</span> root node <span class="arithmatex">\(&lt;\)</span> right subtree," <strong>this node can be either the smallest node of the right subtree or the largest node of the left subtree</strong>.</p>
<p>Assuming we choose the smallest node of the right subtree (the next node in in-order traversal), then the removal operation proceeds as shown in Figure 7-21.</p>
<ol>
<li>Find the next node in the "in-order traversal sequence" of the node to be removed, denoted as <code>tmp</code>.</li>
<li>Replace the value of the node to be removed with <code>tmp</code>'s value, and recursively remove the node <code>tmp</code> in the tree.</li>
</ol>
<div class="tabbed-set tabbed-alternate" data-tabs="4:4"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Removing a node in a binary search tree (degree 2)" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step2" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step3" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../binary_search_tree.assets/bst_remove_case3_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="bst_remove_case3_step4" class="animation-figure" src="../binary_search_tree.assets/bst_remove_case3_step4.png" /></a></p>
</div>
</div>
</div>
<p align="center"> Figure 7-21 &nbsp; Removing a node in a binary search tree (degree 2) </p>
<p>The operation of removing a node also uses <span class="arithmatex">\(O(\log n)\)</span> time, where finding the node to be removed requires <span class="arithmatex">\(O(\log n)\)</span> time, and obtaining the in-order traversal successor node requires <span class="arithmatex">\(O(\log n)\)</span> time. Example code is as follows:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:14"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><input id="__tabbed_5_13" name="__tabbed_5" type="radio" /><input id="__tabbed_5_14" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Python</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Java</label><label for="__tabbed_5_4">C#</label><label for="__tabbed_5_5">Go</label><label for="__tabbed_5_6">Swift</label><label for="__tabbed_5_7">JS</label><label for="__tabbed_5_8">TS</label><label for="__tabbed_5_9">Dart</label><label for="__tabbed_5_10">Rust</label><label for="__tabbed_5_11">C</label><label for="__tabbed_5_12">Kotlin</label><label for="__tabbed_5_13">Ruby</label><label for="__tabbed_5_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.py</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="k">def</span> <span class="nf">remove</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;Remove node&quot;&quot;&quot;</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a> <span class="c1"># If tree is empty, return</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a> <span class="k">return</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a> <span class="c1"># Loop find, break after passing leaf nodes</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a> <span class="n">cur</span><span class="p">,</span> <span class="n">pre</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">,</span> <span class="kc">None</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a> <span class="k">while</span> <span class="n">cur</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a> <span class="c1"># Found node to be removed, break loop</span>
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">==</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a> <span class="k">break</span>
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a> <span class="n">pre</span> <span class="o">=</span> <span class="n">cur</span>
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a> <span class="c1"># Node to be removed is in cur&#39;s right subtree</span>
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">&lt;</span> <span class="n">num</span><span class="p">:</span>
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a> <span class="c1"># Node to be removed is in cur&#39;s left subtree</span>
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a> <span class="n">cur</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a> <span class="c1"># If no node to be removed, return</span>
<a id="__codelineno-28-20" name="__codelineno-28-20" href="#__codelineno-28-20"></a> <span class="k">if</span> <span class="n">cur</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-21" name="__codelineno-28-21" href="#__codelineno-28-21"></a> <span class="k">return</span>
<a id="__codelineno-28-22" name="__codelineno-28-22" href="#__codelineno-28-22"></a>
<a id="__codelineno-28-23" name="__codelineno-28-23" href="#__codelineno-28-23"></a> <span class="c1"># Number of child nodes = 0 or 1</span>
<a id="__codelineno-28-24" name="__codelineno-28-24" href="#__codelineno-28-24"></a> <span class="k">if</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-25" name="__codelineno-28-25" href="#__codelineno-28-25"></a> <span class="c1"># When the number of child nodes = 0/1, child = null/that child node</span>
<a id="__codelineno-28-26" name="__codelineno-28-26" href="#__codelineno-28-26"></a> <span class="n">child</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">left</span> <span class="ow">or</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-27" name="__codelineno-28-27" href="#__codelineno-28-27"></a> <span class="c1"># Remove node cur</span>
<a id="__codelineno-28-28" name="__codelineno-28-28" href="#__codelineno-28-28"></a> <span class="k">if</span> <span class="n">cur</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span><span class="p">:</span>
<a id="__codelineno-28-29" name="__codelineno-28-29" href="#__codelineno-28-29"></a> <span class="k">if</span> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">==</span> <span class="n">cur</span><span class="p">:</span>
<a id="__codelineno-28-30" name="__codelineno-28-30" href="#__codelineno-28-30"></a> <span class="n">pre</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-31" name="__codelineno-28-31" href="#__codelineno-28-31"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-32" name="__codelineno-28-32" href="#__codelineno-28-32"></a> <span class="n">pre</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-33" name="__codelineno-28-33" href="#__codelineno-28-33"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-34" name="__codelineno-28-34" href="#__codelineno-28-34"></a> <span class="c1"># If the removed node is the root, reassign the root</span>
<a id="__codelineno-28-35" name="__codelineno-28-35" href="#__codelineno-28-35"></a> <span class="bp">self</span><span class="o">.</span><span class="n">_root</span> <span class="o">=</span> <span class="n">child</span>
<a id="__codelineno-28-36" name="__codelineno-28-36" href="#__codelineno-28-36"></a> <span class="c1"># Number of child nodes = 2</span>
<a id="__codelineno-28-37" name="__codelineno-28-37" href="#__codelineno-28-37"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-28-38" name="__codelineno-28-38" href="#__codelineno-28-38"></a> <span class="c1"># Get the next node in in-order traversal of cur</span>
<a id="__codelineno-28-39" name="__codelineno-28-39" href="#__codelineno-28-39"></a> <span class="n">tmp</span><span class="p">:</span> <span class="n">TreeNode</span> <span class="o">=</span> <span class="n">cur</span><span class="o">.</span><span class="n">right</span>
<a id="__codelineno-28-40" name="__codelineno-28-40" href="#__codelineno-28-40"></a> <span class="k">while</span> <span class="n">tmp</span><span class="o">.</span><span class="n">left</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<a id="__codelineno-28-41" name="__codelineno-28-41" href="#__codelineno-28-41"></a> <span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">left</span>
<a id="__codelineno-28-42" name="__codelineno-28-42" href="#__codelineno-28-42"></a> <span class="c1"># Recursively remove node tmp</span>
<a id="__codelineno-28-43" name="__codelineno-28-43" href="#__codelineno-28-43"></a> <span class="bp">self</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="o">.</span><span class="n">val</span><span class="p">)</span>
<a id="__codelineno-28-44" name="__codelineno-28-44" href="#__codelineno-28-44"></a> <span class="c1"># Replace cur with tmp</span>
<a id="__codelineno-28-45" name="__codelineno-28-45" href="#__codelineno-28-45"></a> <span class="n">cur</span><span class="o">.</span><span class="n">val</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">val</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cpp</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* Remove node */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="c1">// If tree is empty, return</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">;</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="c1">// Found node to be removed, break loop</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="c1">// Node to be removed is in cur&#39;s right subtree</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// Node to be removed is in cur&#39;s left subtree</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="c1">// If no node to be removed, return</span>
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span>
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-29-23" name="__codelineno-29-23" href="#__codelineno-29-23"></a><span class="w"> </span><span class="c1">// Number of child nodes = 0 or 1</span>
<a id="__codelineno-29-24" name="__codelineno-29-24" href="#__codelineno-29-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-25" name="__codelineno-29-25" href="#__codelineno-29-25"></a><span class="w"> </span><span class="c1">// When the number of child nodes = 0 / 1, child = nullptr / that child node</span>
<a id="__codelineno-29-26" name="__codelineno-29-26" href="#__codelineno-29-26"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-27" name="__codelineno-29-27" href="#__codelineno-29-27"></a><span class="w"> </span><span class="c1">// Remove node cur</span>
<a id="__codelineno-29-28" name="__codelineno-29-28" href="#__codelineno-29-28"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-29" name="__codelineno-29-29" href="#__codelineno-29-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-29-30" name="__codelineno-29-30" href="#__codelineno-29-30"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-31" name="__codelineno-29-31" href="#__codelineno-29-31"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-29-32" name="__codelineno-29-32" href="#__codelineno-29-32"></a><span class="w"> </span><span class="n">pre</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-33" name="__codelineno-29-33" href="#__codelineno-29-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-34" name="__codelineno-29-34" href="#__codelineno-29-34"></a><span class="w"> </span><span class="c1">// If the removed node is the root, reassign the root</span>
<a id="__codelineno-29-35" name="__codelineno-29-35" href="#__codelineno-29-35"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-29-36" name="__codelineno-29-36" href="#__codelineno-29-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-37" name="__codelineno-29-37" href="#__codelineno-29-37"></a><span class="w"> </span><span class="c1">// Free memory</span>
<a id="__codelineno-29-38" name="__codelineno-29-38" href="#__codelineno-29-38"></a><span class="w"> </span><span class="k">delete</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-29-39" name="__codelineno-29-39" href="#__codelineno-29-39"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-40" name="__codelineno-29-40" href="#__codelineno-29-40"></a><span class="w"> </span><span class="c1">// Number of child nodes = 2</span>
<a id="__codelineno-29-41" name="__codelineno-29-41" href="#__codelineno-29-41"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-42" name="__codelineno-29-42" href="#__codelineno-29-42"></a><span class="w"> </span><span class="c1">// Get the next node in in-order traversal of cur</span>
<a id="__codelineno-29-43" name="__codelineno-29-43" href="#__codelineno-29-43"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">right</span><span class="p">;</span>
<a id="__codelineno-29-44" name="__codelineno-29-44" href="#__codelineno-29-44"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">nullptr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-45" name="__codelineno-29-45" href="#__codelineno-29-45"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">left</span><span class="p">;</span>
<a id="__codelineno-29-46" name="__codelineno-29-46" href="#__codelineno-29-46"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-47" name="__codelineno-29-47" href="#__codelineno-29-47"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmpVal</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-29-48" name="__codelineno-29-48" href="#__codelineno-29-48"></a><span class="w"> </span><span class="c1">// Recursively remove node tmp</span>
<a id="__codelineno-29-49" name="__codelineno-29-49" href="#__codelineno-29-49"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="o">-&gt;</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-29-50" name="__codelineno-29-50" href="#__codelineno-29-50"></a><span class="w"> </span><span class="c1">// Replace cur with tmp</span>
<a id="__codelineno-29-51" name="__codelineno-29-51" href="#__codelineno-29-51"></a><span class="w"> </span><span class="n">cur</span><span class="o">-&gt;</span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmpVal</span><span class="p">;</span>
<a id="__codelineno-29-52" name="__codelineno-29-52" href="#__codelineno-29-52"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-53" name="__codelineno-29-53" href="#__codelineno-29-53"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.java</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="cm">/* Remove node */</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">remove</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="c1">// If tree is empty, return</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">root</span><span class="p">,</span><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">null</span><span class="p">;</span>
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="c1">// Loop find, break after passing leaf nodes</span>
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="w"> </span><span class="c1">// Found node to be removed, break loop</span>
<a id="__codelineno-30-10" name="__codelineno-30-10" href="#__codelineno-30-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-30-11" name="__codelineno-30-11" href="#__codelineno-30-11"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-30-12" name="__codelineno-30-12" href="#__codelineno-30-12"></a><span class="w"> </span><span class="n">pre</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">;</span>
<a id="__codelineno-30-13" name="__codelineno-30-13" href="#__codelineno-30-13"></a><span class="w"> </span><span class="c1">// Node to be removed is in cur&#39;s right subtree</span>
<a id="__codelineno-30-14" name="__codelineno-30-14" href="#__codelineno-30-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">num</span><span class="p">)</span>
<a id="__codelineno-30-15" name="__codelineno-30-15" href="#__codelineno-30-15"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-16" name="__codelineno-30-16" href="#__codelineno-30-16"></a><span class="w"> </span><span class="c1">// Node to be removed is in cur&#39;s left subtree</span>
<a id="__codelineno-30-17" name="__codelineno-30-17" href="#__codelineno-30-17"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-30-18" name="__codelineno-30-18" href="#__codelineno-30-18"></a><span class="w"> </span><span class="n">cur</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-30-19" name="__codelineno-30-19" href="#__codelineno-30-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-20" name="__codelineno-30-20" href="#__codelineno-30-20"></a><span class="w"> </span><span class="c1">// If no node to be removed, return</span>
<a id="__codelineno-30-21" name="__codelineno-30-21" href="#__codelineno-30-21"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span>
<a id="__codelineno-30-22" name="__codelineno-30-22" href="#__codelineno-30-22"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-30-23" name="__codelineno-30-23" href="#__codelineno-30-23"></a><span class="w"> </span><span class="c1">// Number of child nodes = 0 or 1</span>
<a id="__codelineno-30-24" name="__codelineno-30-24" href="#__codelineno-30-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-25" name="__codelineno-30-25" href="#__codelineno-30-25"></a><span class="w"> </span><span class="c1">// When the number of child nodes = 0/1, child = null/that child node</span>
<a id="__codelineno-30-26" name="__codelineno-30-26" href="#__codelineno-30-26"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">child</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-27" name="__codelineno-30-27" href="#__codelineno-30-27"></a><span class="w"> </span><span class="c1">// Remove node cur</span>
<a id="__codelineno-30-28" name="__codelineno-30-28" href="#__codelineno-30-28"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">cur</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">root</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-29" name="__codelineno-30-29" href="#__codelineno-30-29"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">cur</span><span class="p">)</span>
<a id="__codelineno-30-30" name="__codelineno-30-30" href="#__codelineno-30-30"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-31" name="__codelineno-30-31" href="#__codelineno-30-31"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-30-32" name="__codelineno-30-32" href="#__codelineno-30-32"></a><span class="w"> </span><span class="n">pre</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-33" name="__codelineno-30-33" href="#__codelineno-30-33"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-34" name="__codelineno-30-34" href="#__codelineno-30-34"></a><span class="w"> </span><span class="c1">// If the removed node is the root, reassign the root</span>
<a id="__codelineno-30-35" name="__codelineno-30-35" href="#__codelineno-30-35"></a><span class="w"> </span><span class="n">root</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">child</span><span class="p">;</span>
<a id="__codelineno-30-36" name="__codelineno-30-36" href="#__codelineno-30-36"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-37" name="__codelineno-30-37" href="#__codelineno-30-37"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-38" name="__codelineno-30-38" href="#__codelineno-30-38"></a><span class="w"> </span><span class="c1">// Number of child nodes = 2</span>
<a id="__codelineno-30-39" name="__codelineno-30-39" href="#__codelineno-30-39"></a><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-40" name="__codelineno-30-40" href="#__codelineno-30-40"></a><span class="w"> </span><span class="c1">// Get the next node in in-order traversal of cur</span>
<a id="__codelineno-30-41" name="__codelineno-30-41" href="#__codelineno-30-41"></a><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">right</span><span class="p">;</span>
<a id="__codelineno-30-42" name="__codelineno-30-42" href="#__codelineno-30-42"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="kc">null</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-43" name="__codelineno-30-43" href="#__codelineno-30-43"></a><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">left</span><span class="p">;</span>
<a id="__codelineno-30-44" name="__codelineno-30-44" href="#__codelineno-30-44"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-45" name="__codelineno-30-45" href="#__codelineno-30-45"></a><span class="w"> </span><span class="c1">// Recursively remove node tmp</span>
<a id="__codelineno-30-46" name="__codelineno-30-46" href="#__codelineno-30-46"></a><span class="w"> </span><span class="n">remove</span><span class="p">(</span><span class="n">tmp</span><span class="p">.</span><span class="na">val</span><span class="p">);</span>
<a id="__codelineno-30-47" name="__codelineno-30-47" href="#__codelineno-30-47"></a><span class="w"> </span><span class="c1">// Replace cur with tmp</span>
<a id="__codelineno-30-48" name="__codelineno-30-48" href="#__codelineno-30-48"></a><span class="w"> </span><span class="n">cur</span><span class="p">.</span><span class="na">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">.</span><span class="na">val</span><span class="p">;</span>
<a id="__codelineno-30-49" name="__codelineno-30-49" href="#__codelineno-30-49"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-50" name="__codelineno-30-50" href="#__codelineno-30-50"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.cs</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">Remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.go</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{</span><span class="nx">binarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.swift</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.js</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.ts</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{</span><span class="nx">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.dart</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rs</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.c</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">removeItem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.kt</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.rb</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{</span><span class="no">BinarySearchTree</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">binary_search_tree.zig</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">BinarySearchTree</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">remove</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="4-in-order-traversal-is-ordered">4. &nbsp; In-order traversal is ordered<a class="headerlink" href="#4-in-order-traversal-is-ordered" title="Permanent link">&para;</a></h3>
<p>As shown in Figure 7-22, the in-order traversal of a binary tree follows the "left <span class="arithmatex">\(\rightarrow\)</span> root <span class="arithmatex">\(\rightarrow\)</span> right" traversal order, and a binary search tree satisfies the size relationship "left child node <span class="arithmatex">\(&lt;\)</span> root node <span class="arithmatex">\(&lt;\)</span> right child node".</p>
<p>This means that in-order traversal in a binary search tree always traverses the next smallest node first, thus deriving an important property: <strong>The in-order traversal sequence of a binary search tree is ascending</strong>.</p>
<p>Using the ascending property of in-order traversal, obtaining ordered data in a binary search tree requires only <span class="arithmatex">\(O(n)\)</span> time, without the need for additional sorting operations, which is very efficient.</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_inorder_traversal.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="In-order traversal sequence of a binary search tree" class="animation-figure" src="../binary_search_tree.assets/bst_inorder_traversal.png" /></a></p>
<p align="center"> Figure 7-22 &nbsp; In-order traversal sequence of a binary search tree </p>
<h2 id="742-efficiency-of-binary-search-trees">7.4.2 &nbsp; Efficiency of binary search trees<a class="headerlink" href="#742-efficiency-of-binary-search-trees" title="Permanent link">&para;</a></h2>
<p>Given a set of data, we consider using an array or a binary search tree for storage. Observing Table 7-2, the operations on a binary search tree all have logarithmic time complexity, which is stable and efficient. Only in scenarios of high-frequency addition and low-frequency search and removal, arrays are more efficient than binary search trees.</p>
<p align="center"> Table 7-2 &nbsp; Efficiency comparison between arrays and search trees </p>
<div class="center-table">
<table>
<thead>
<tr>
<th></th>
<th>Unsorted array</th>
<th>Binary search tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search element</td>
<td><span class="arithmatex">\(O(n)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
<tr>
<td>Insert element</td>
<td><span class="arithmatex">\(O(1)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
<tr>
<td>Remove element</td>
<td><span class="arithmatex">\(O(n)\)</span></td>
<td><span class="arithmatex">\(O(\log n)\)</span></td>
</tr>
</tbody>
</table>
</div>
<p>In ideal conditions, the binary search tree is "balanced," thus any node can be found within <span class="arithmatex">\(\log n\)</span> loops.</p>
<p>However, continuously inserting and removing nodes in a binary search tree may lead to the binary tree degenerating into a chain list as shown in Figure 7-23, at which point the time complexity of various operations also degrades to <span class="arithmatex">\(O(n)\)</span>.</p>
<p><a class="glightbox" href="../binary_search_tree.assets/bst_degradation.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Degradation of a binary search tree" class="animation-figure" src="../binary_search_tree.assets/bst_degradation.png" /></a></p>
<p align="center"> Figure 7-23 &nbsp; Degradation of a binary search tree </p>
<h2 id="743-common-applications-of-binary-search-trees">7.4.3 &nbsp; Common applications of binary search trees<a class="headerlink" href="#743-common-applications-of-binary-search-trees" title="Permanent link">&para;</a></h2>
<ul>
<li>Used as multi-level indexes in systems to implement efficient search, insertion, and removal operations.</li>
<li>Serves as the underlying data structure for certain search algorithms.</li>
<li>Used to store data streams to maintain their ordered state.</li>
</ul>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="Footer"
>
<!-- Link to previous page -->
<a
href="../array_representation_of_tree/"
class="md-footer__link md-footer__link--prev"
aria-label="Previous: 7.3 Array Representation of tree"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
7.3 Array Representation of tree
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../avl_tree/"
class="md-footer__link md-footer__link--next"
aria-label="Next: 7.5 AVL tree *"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
7.5 AVL tree *
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments">Feel free to drop your insights, questions or suggestions</h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="en"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
Back to top
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="Footer" >
<a href="../array_representation_of_tree/" class="md-footer__link md-footer__link--prev" aria-label="Previous: 7.3 Array Representation of tree">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
7.3 Array Representation of tree
</div>
</div>
</a>
<a href="../avl_tree/" class="md-footer__link md-footer__link--next" aria-label="Next: 7.5 AVL tree *">
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
7.5 AVL tree *
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>