You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_graph/graph_traversal.md

22 KiB

comments
true

9.3.   图的遍历

!!! note "图与树的关系"

树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,**树的遍历操作也是图的遍历操作的一种特例**,建议你在学习本章节时融会贯通两者的概念与实现方法。

「图」和「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。

与树类似,图的遍历方式也可分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Traversal」也称为「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」简称 BFS 和 DFS。

9.3.1.   广度优先遍历

广度优先遍历是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体来说,从某个顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。

图的广度优先遍历

Fig. 图的广度优先遍历

算法实现

BFS 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。

  1. 将遍历起始顶点 startVet 加入队列,并开启循环;
  2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部;
  3. 循环步骤 2. ,直到所有顶点被访问完成后结束;

为了防止重复遍历顶点,我们需要借助一个哈希表 visited 来记录哪些节点已被访问。

=== "Java"

```java title="graph_bfs.java"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
    // 顶点遍历序列
    List<Vertex> res = new ArrayList<>();
    // 哈希表,用于记录已被访问过的顶点
    Set<Vertex> visited = new HashSet<>() {{ add(startVet); }};
    // 队列用于实现 BFS
    Queue<Vertex> que = new LinkedList<>() {{ offer(startVet); }};
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (!que.isEmpty()) {
        Vertex vet = que.poll(); // 队首顶点出队
        res.add(vet);            // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (Vertex adjVet : graph.adjList.get(vet)) {
            if (visited.contains(adjVet))
                continue;        // 跳过已被访问过的顶点
            que.offer(adjVet);   // 只入队未访问的顶点
            visited.add(adjVet); // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}
```

=== "C++"

```cpp title="graph_bfs.cpp"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex*> graphBFS(GraphAdjList &graph, Vertex *startVet) {
    // 顶点遍历序列
    vector<Vertex*> res;
    // 哈希表,用于记录已被访问过的顶点
    unordered_set<Vertex*> visited = { startVet };
    // 队列用于实现 BFS
    queue<Vertex*> que;
    que.push(startVet);
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (!que.empty()) {
        Vertex *vet = que.front();
        que.pop();          // 队首顶点出队
        res.push_back(vet); // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (auto adjVet : graph.adjList[vet]) {
            if (visited.count(adjVet))
                continue;           // 跳过已被访问过的顶点
            que.push(adjVet);       // 只入队未访问的顶点
            visited.emplace(adjVet); // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}
```

=== "Python"

```python title="graph_bfs.py"
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
    """广度优先遍历 BFS"""
    # 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
    # 顶点遍历序列
    res = []
    # 哈希表,用于记录已被访问过的顶点
    visited = set[Vertex]([start_vet])
    # 队列用于实现 BFS
    que = deque[Vertex]([start_vet])
    # 以顶点 vet 为起点,循环直至访问完所有顶点
    while len(que) > 0:
        vet = que.popleft()  # 队首顶点出队
        res.append(vet)  # 记录访问顶点
        # 遍历该顶点的所有邻接顶点
        for adj_vet in graph.adj_list[vet]:
            if adj_vet in visited:
                continue  # 跳过已被访问过的顶点
            que.append(adj_vet)  # 只入队未访问的顶点
            visited.add(adj_vet)  # 标记该顶点已被访问
    # 返回顶点遍历序列
    return res
```

=== "Go"

```go title="graph_bfs.go"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphBFS(g *graphAdjList, startVet Vertex) []Vertex {
    // 顶点遍历序列
    res := make([]Vertex, 0)
    // 哈希表,用于记录已被访问过的顶点
    visited := make(map[Vertex]struct{})
    visited[startVet] = struct{}{}
    // 队列用于实现 BFS, 使用切片模拟队列
    queue := make([]Vertex, 0)
    queue = append(queue, startVet)
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    for len(queue) > 0 {
        // 队首顶点出队
        vet := queue[0]
        queue = queue[1:]
        // 记录访问顶点
        res = append(res, vet)
        // 遍历该顶点的所有邻接顶点
        for _, adjVet := range g.adjList[vet] {
            _, isExist := visited[adjVet]
            // 只入队未访问的顶点
            if !isExist {
                queue = append(queue, adjVet)
                visited[adjVet] = struct{}{}
            }
        }
    }
    // 返回顶点遍历序列
    return res
}
```

=== "JavaScript"

```javascript title="graph_bfs.js"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphBFS(graph, startVet) {
    // 顶点遍历序列
    const res = [];
    // 哈希表,用于记录已被访问过的顶点
    const visited = new Set();
    visited.add(startVet);
    // 队列用于实现 BFS
    const que = [startVet];
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (que.length) {
        const vet = que.shift();    // 队首顶点出队
        res.push(vet);              // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (const adjVet of graph.adjList.get(vet) ?? []) {
            if (visited.has(adjVet)) {
                continue;           // 跳过已被访问过的顶点
            }
            que.push(adjVet);       // 只入队未访问的顶点
            visited.add(adjVet);    // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}
```

=== "TypeScript"

```typescript title="graph_bfs.ts"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
    // 顶点遍历序列
    const res: Vertex[] = [];
    // 哈希表,用于记录已被访问过的顶点
    const visited: Set<Vertex> = new Set();
    visited.add(startVet);
    // 队列用于实现 BFS
    const que = [startVet];
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (que.length) {
        const vet = que.shift(); // 队首顶点出队
        res.push(vet); // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (const adjVet of graph.adjList.get(vet) ?? []) {
            if (visited.has(adjVet)) {
                continue; // 跳过已被访问过的顶点
            }
            que.push(adjVet); // 只入队未访问
            visited.add(adjVet); // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}
```

=== "C"

```c title="graph_bfs.c"
[class]{}-[func]{graphBFS}
```

=== "C#"

```csharp title="graph_bfs.cs"
[class]{graph_bfs}-[func]{graphBFS}
```

=== "Swift"

```swift title="graph_bfs.swift"
/* 广度优先遍历 BFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
    // 顶点遍历序列
    var res: [Vertex] = []
    // 哈希表,用于记录已被访问过的顶点
    var visited: Set<Vertex> = [startVet]
    // 队列用于实现 BFS
    var que: [Vertex] = [startVet]
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while !que.isEmpty {
        let vet = que.removeFirst() // 队首顶点出队
        res.append(vet) // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for adjVet in graph.adjList[vet] ?? [] {
            if visited.contains(adjVet) {
                continue // 跳过已被访问过的顶点
            }
            que.append(adjVet) // 只入队未访问的顶点
            visited.insert(adjVet) // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res
}
```

=== "Zig"

```zig title="graph_bfs.zig"
[class]{}-[func]{graphBFS}
```

代码相对抽象,建议对照以下动画图示来加深理解。

=== "<1>" 图的广度优先遍历步骤

=== "<2>" graph_bfs_step2

=== "<3>" graph_bfs_step3

=== "<4>" graph_bfs_step4

=== "<5>" graph_bfs_step5

=== "<6>" graph_bfs_step6

=== "<7>" graph_bfs_step7

=== "<8>" graph_bfs_step8

=== "<9>" graph_bfs_step9

=== "<10>" graph_bfs_step10

=== "<11>" graph_bfs_step11

!!! question "广度优先遍历的序列是否唯一?"

不唯一。广度优先遍历只要求按“由近及远”的顺序遍历,**而多个相同距离的顶点的遍历顺序是允许被任意打乱的**。以上图为例,顶点 $1$ , $3$ 的访问顺序可以交换、顶点 $2$ , $4$ , $6$ 的访问顺序也可以任意交换。

复杂度分析

时间复杂度: 所有顶点都会入队并出队一次,使用 O(|V|) 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 2 次,使用 O(2|E|) 时间;总体使用 O(|V| + |E|) 时间。

空间复杂度: 列表 res ,哈希表 visited ,队列 que 中的顶点数量最多为 |V| ,使用 O(|V|) 空间。

9.3.2.   深度优先遍历

深度优先遍历是一种优先走到底、无路可走再回头的遍历方式。具体地,从某个顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。

图的深度优先遍历

Fig. 图的深度优先遍历

算法实现

这种“走到尽头 + 回溯”的算法形式通常基于递归来实现。与 BFS 类似,在 DFS 中我们也需要借助一个哈希表 visited 来记录已被访问的顶点,以避免重复访问顶点。

=== "Java"

```java title="graph_dfs.java"
/* 深度优先遍历 DFS 辅助函数 */
void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
    res.add(vet);     // 记录访问顶点
    visited.add(vet); // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (Vertex adjVet : graph.adjList.get(vet)) {
        if (visited.contains(adjVet))
            continue; // 跳过已被访问过的顶点
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
    // 顶点遍历序列
    List<Vertex> res = new ArrayList<>();
    // 哈希表,用于记录已被访问过的顶点
    Set<Vertex> visited = new HashSet<>();
    dfs(graph, visited, res, startVet);
    return res;
}
```

=== "C++"

```cpp title="graph_dfs.cpp"
/* 深度优先遍历 DFS 辅助函数 */
void dfs(GraphAdjList& graph, unordered_set<Vertex*>& visited, vector<Vertex*>& res, Vertex* vet) {
    res.push_back(vet);   // 记录访问顶点
    visited.emplace(vet); // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (Vertex* adjVet : graph.adjList[vet]) {
        if (visited.count(adjVet))
            continue;     // 跳过已被访问过的顶点
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex*> graphDFS(GraphAdjList& graph, Vertex* startVet) {
    // 顶点遍历序列
    vector<Vertex*> res;
    // 哈希表,用于记录已被访问过的顶点
    unordered_set<Vertex*> visited;
    dfs(graph, visited, res, startVet);
    return res;
}
```

=== "Python"

```python title="graph_dfs.py"
def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
    """深度优先遍历 DFS 辅助函数"""
    res.append(vet)  # 记录访问顶点
    visited.add(vet)  # 标记该顶点已被访问
    # 遍历该顶点的所有邻接顶点
    for adjVet in graph.adj_list[vet]:
        if adjVet in visited:
            continue  # 跳过已被访问过的顶点
        # 递归访问邻接顶点
        dfs(graph, visited, res, adjVet)

def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
    """深度优先遍历 DFS"""
    # 顶点遍历序列
    res = []
    # 哈希表,用于记录已被访问过的顶点
    visited = set[Vertex]()
    dfs(graph, visited, res, start_vet)
    return res
```

=== "Go"

```go title="graph_dfs.go"
/* 深度优先遍历 DFS 辅助函数 */
func dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {
    // append 操作会返回新的的引用必须让原引用重新赋值为新slice的引用
    *res = append(*res, vet)
    visited[vet] = struct{}{}
    // 遍历该顶点的所有邻接顶点
    for _, adjVet := range g.adjList[vet] {
        _, isExist := visited[adjVet]
        // 递归访问邻接顶点
        if !isExist {
            dfs(g, visited, res, adjVet)
        }
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(g *graphAdjList, startVet Vertex) []Vertex {
    // 顶点遍历序列
    res := make([]Vertex, 0)
    // 哈希表,用于记录已被访问过的顶点
    visited := make(map[Vertex]struct{})
    dfs(g, visited, &res, startVet)
    // 返回顶点遍历序列
    return res
}
```

=== "JavaScript"

```javascript title="graph_dfs.js"
/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function dfs(graph, visited, res, vet) {
    res.push(vet);      // 记录访问顶点
    visited.add(vet);   // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (const adjVet of graph.adjList.get(vet)) {
        if (visited.has(adjVet)) {
            continue; // 跳过已被访问过的顶点
        }
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphDFS(graph, startVet) {
    // 顶点遍历序列
    const res = [];
    // 哈希表,用于记录已被访问过的顶点
    const visited = new Set();
    dfs(graph, visited, res, startVet);
    return res;
}
```

=== "TypeScript"

```typescript title="graph_dfs.ts"
/* 深度优先遍历 DFS 辅助函数 */
function dfs(graph: GraphAdjList, visited: Set<Vertex>, res: Vertex[], vet: Vertex): void {
    res.push(vet); // 记录访问顶点
    visited.add(vet); // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (const adjVet of graph.adjList.get(vet)) {
        if (visited.has(adjVet)) {
            continue; // 跳过已被访问过的顶点
        }
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
function graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {
    // 顶点遍历序列
    const res: Vertex[] = [];
    // 哈希表,用于记录已被访问过的顶点
    const visited: Set<Vertex> = new Set();
    dfs(graph, visited, res, startVet);
    return res;
}
```

=== "C"

```c title="graph_dfs.c"
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
```

=== "C#"

```csharp title="graph_dfs.cs"
[class]{graph_dfs}-[func]{dfs}

[class]{graph_dfs}-[func]{graphDFS}
```

=== "Swift"

```swift title="graph_dfs.swift"
/* 深度优先遍历 DFS 辅助函数 */
func dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {
    res.append(vet) // 记录访问顶点
    visited.insert(vet) // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for adjVet in graph.adjList[vet] ?? [] {
        if visited.contains(adjVet) {
            continue // 跳过已被访问过的顶点
        }
        // 递归访问邻接顶点
        dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)
    }
}

/* 深度优先遍历 DFS */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
    // 顶点遍历序列
    var res: [Vertex] = []
    // 哈希表,用于记录已被访问过的顶点
    var visited: Set<Vertex> = []
    dfs(graph: graph, visited: &visited, res: &res, vet: startVet)
    return res
}
```

=== "Zig"

```zig title="graph_dfs.zig"
[class]{}-[func]{dfs}

[class]{}-[func]{graphDFS}
```

深度优先遍历的算法流程如下图所示,其中:

  • 直虚线代表向下递推,表示开启了一个新的递归方法来访问新顶点;
  • 曲虚线代表向上回溯,表示此递归方法已经返回,回溯到了开启此递归方法的位置;

为了加深理解,建议将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。

=== "<1>" 图的深度优先遍历步骤

=== "<2>" graph_dfs_step2

=== "<3>" graph_dfs_step3

=== "<4>" graph_dfs_step4

=== "<5>" graph_dfs_step5

=== "<6>" graph_dfs_step6

=== "<7>" graph_dfs_step7

=== "<8>" graph_dfs_step8

=== "<9>" graph_dfs_step9

=== "<10>" graph_dfs_step10

=== "<11>" graph_dfs_step11

!!! question "深度优先遍历的序列是否唯一?"

与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。

以树的遍历为例,“根 $\rightarrow$ 左 $\rightarrow$ 右”、“左 $\rightarrow$ 根 $\rightarrow$ 右”、“左 $\rightarrow$ 右 $\rightarrow$ 根”分别对应前序、中序、后序遍历,它们展示了三种不同的遍历优先级,然而这三者都属于深度优先遍历。

复杂度分析

时间复杂度: 所有顶点都会被访问 1 次,使用 O(|V|) 时间;所有边都会被访问 2 次,使用 O(2|E|) 时间;总体使用 O(|V| + |E|) 时间。

空间复杂度: 列表 res ,哈希表 visited 顶点数量最多为 |V| ,递归深度最大为 |V| ,因此使用 O(|V|) 空间。