You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/zig/chapter_tree/avl_tree.zig

249 lines
9.1 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// File: avl_tree.zig
// Created Time: 2023-01-15
// Author: codingonion (coderonion@gmail.com)
const std = @import("std");
const inc = @import("include");
// AVL 樹
pub fn AVLTree(comptime T: type) type {
return struct {
const Self = @This();
root: ?*inc.TreeNode(T) = null, // 根節點
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 記憶體分配器
// 建構子
pub fn init(self: *Self, allocator: std.mem.Allocator) void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
}
// 析構方法
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 獲取節點高度
fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {
_ = self;
// 空節點高度為 -1 ,葉節點高度為 0
return if (node == null) -1 else node.?.height;
}
// 更新節點高度
fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {
// 節點高度等於最高子樹高度 + 1
node.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;
}
// 獲取平衡因子
fn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {
// 空節點平衡因子為 0
if (node == null) return 0;
// 節點平衡因子 = 左子樹高度 - 右子樹高度
return self.height(node.?.left) - self.height(node.?.right);
}
// 右旋操作
fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.left;
var grandChild = child.?.right;
// 以 child 為原點,將 node 向右旋轉
child.?.right = node;
node.?.left = grandChild;
// 更新節點高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋轉後子樹的根節點
return child;
}
// 左旋操作
fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.right;
var grandChild = child.?.left;
// 以 child 為原點,將 node 向左旋轉
child.?.left = node;
node.?.right = grandChild;
// 更新節點高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋轉後子樹的根節點
return child;
}
// 執行旋轉操作,使該子樹重新恢復平衡
fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
// 獲取節點 node 的平衡因子
var balance_factor = self.balanceFactor(node);
// 左偏樹
if (balance_factor > 1) {
if (self.balanceFactor(node.?.left) >= 0) {
// 右旋
return self.rightRotate(node);
} else {
// 先左旋後右旋
node.?.left = self.leftRotate(node.?.left);
return self.rightRotate(node);
}
}
// 右偏樹
if (balance_factor < -1) {
if (self.balanceFactor(node.?.right) <= 0) {
// 左旋
return self.leftRotate(node);
} else {
// 先右旋後左旋
node.?.right = self.rightRotate(node.?.right);
return self.leftRotate(node);
}
}
// 平衡樹,無須旋轉,直接返回
return node;
}
// 插入節點
fn insert(self: *Self, val: T) !void {
self.root = (try self.insertHelper(self.root, val)).?;
}
// 遞迴插入節點(輔助方法)
fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {
var node = node_;
if (node == null) {
var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));
tmp_node.init(val);
return tmp_node;
}
// 1. 查詢插入位置並插入節點
if (val < node.?.val) {
node.?.left = try self.insertHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = try self.insertHelper(node.?.right, val);
} else {
return node; // 重複節點不插入,直接返回
}
self.updateHeight(node); // 更新節點高度
// 2. 執行旋轉操作,使該子樹重新恢復平衡
node = self.rotate(node);
// 返回子樹的根節點
return node;
}
// 刪除節點
fn remove(self: *Self, val: T) void {
self.root = self.removeHelper(self.root, val).?;
}
// 遞迴刪除節點(輔助方法)
fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
var node = node_;
if (node == null) return null;
// 1. 查詢節點並刪除
if (val < node.?.val) {
node.?.left = self.removeHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = self.removeHelper(node.?.right, val);
} else {
if (node.?.left == null or node.?.right == null) {
var child = if (node.?.left != null) node.?.left else node.?.right;
// 子節點數量 = 0 ,直接刪除 node 並返回
if (child == null) {
return null;
// 子節點數量 = 1 ,直接刪除 node
} else {
node = child;
}
} else {
// 子節點數量 = 2 ,則將中序走訪的下個節點刪除,並用該節點替換當前節點
var temp = node.?.right;
while (temp.?.left != null) {
temp = temp.?.left;
}
node.?.right = self.removeHelper(node.?.right, temp.?.val);
node.?.val = temp.?.val;
}
}
self.updateHeight(node); // 更新節點高度
// 2. 執行旋轉操作,使該子樹重新恢復平衡
node = self.rotate(node);
// 返回子樹的根節點
return node;
}
// 查詢節點
fn search(self: *Self, val: T) ?*inc.TreeNode(T) {
var cur = self.root;
// 迴圈查詢,越過葉節點後跳出
while (cur != null) {
// 目標節點在 cur 的右子樹中
if (cur.?.val < val) {
cur = cur.?.right;
// 目標節點在 cur 的左子樹中
} else if (cur.?.val > val) {
cur = cur.?.left;
// 找到目標節點,跳出迴圈
} else {
break;
}
}
// 返回目標節點
return cur;
}
};
}
pub fn testInsert(comptime T: type, tree_: *AVLTree(T), val: T) !void {
var tree = tree_;
try tree.insert(val);
std.debug.print("\n插入節點 {} 後AVL 樹為\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
pub fn testRemove(comptime T: type, tree_: *AVLTree(T), val: T) void {
var tree = tree_;
tree.remove(val);
std.debug.print("\n刪除節點 {} 後AVL 樹為\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
// Driver Code
pub fn main() !void {
// 初始化空 AVL 樹
var avl_tree = AVLTree(i32){};
avl_tree.init(std.heap.page_allocator);
defer avl_tree.deinit();
// 插入節點
// 請關注插入節點後AVL 樹是如何保持平衡的
try testInsert(i32, &avl_tree, 1);
try testInsert(i32, &avl_tree, 2);
try testInsert(i32, &avl_tree, 3);
try testInsert(i32, &avl_tree, 4);
try testInsert(i32, &avl_tree, 5);
try testInsert(i32, &avl_tree, 8);
try testInsert(i32, &avl_tree, 7);
try testInsert(i32, &avl_tree, 9);
try testInsert(i32, &avl_tree, 10);
try testInsert(i32, &avl_tree, 6);
// 插入重複節點
try testInsert(i32, &avl_tree, 7);
// 刪除節點
// 請關注刪除節點後AVL 樹是如何保持平衡的
testRemove(i32, &avl_tree, 8); // 刪除度為 0 的節點
testRemove(i32, &avl_tree, 5); // 刪除度為 1 的節點
testRemove(i32, &avl_tree, 4); // 刪除度為 2 的節點
// 查詢節點
var node = avl_tree.search(7).?;
std.debug.print("\n查詢到的節點物件為 {any},節點值 = {}\n", .{node, node.val});
_ = try std.io.getStdIn().reader().readByte();
}