You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4.9 KiB
4.9 KiB
图的基础操作
图的基础操作可分为对“边”的操作和对“顶点”的操作。在“邻接矩阵”和“邻接表”两种表示方法下,实现方式有所不同。
基于邻接矩阵的实现
给定一个顶点数量为 n
的无向图,则各种操作的实现方式如下图所示。
- 添加或删除边:直接在邻接矩阵中修改指定的边即可,使用
O(1)
时间。而由于是无向图,因此需要同时更新两个方向的边。 - 添加顶点:在邻接矩阵的尾部添加一行一列,并全部填
0
即可,使用O(n)
时间。 - 删除顶点:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将
(n-1)^2
个元素“向左上移动”,从而使用O(n^2)
时间。 - 初始化:传入
n
个顶点,初始化长度为n
的顶点列表vertices
,使用O(n)
时间;初始化n \times n
大小的邻接矩阵adjMat
,使用O(n^2)
时间。
以下是基于邻接矩阵表示图的实现代码:
[file]{graph_adjacency_matrix}-[class]{graph_adj_mat}-[func]{}
基于邻接表的实现
设无向图的顶点总数为 n
、边总数为 m
,则可根据下图所示的方法实现各种操作。
- 添加边:在顶点对应链表的末尾添加边即可,使用
O(1)
时间。因为是无向图,所以需要同时添加两个方向的边。 - 删除边:在顶点对应链表中查找并删除指定边,使用
O(m)
时间。在无向图中,需要同时删除两个方向的边。 - 添加顶点:在邻接表中添加一个链表,并将新增顶点作为链表头节点,使用
O(1)
时间。 - 删除顶点:需遍历整个邻接表,删除包含指定顶点的所有边,使用
O(n + m)
时间。 - 初始化:在邻接表中创建
n
个顶点和2m
条边,使用O(n + m)
时间。
以下是邻接表的代码实现。对比上图,实际代码有以下不同。
- 为了方便添加与删除顶点,以及简化代码,我们使用列表(动态数组)来代替链表。
- 使用哈希表来存储邻接表,
key
为顶点实例,value
为该顶点的邻接顶点列表(链表)。
另外,我们在邻接表中使用 Vertex
类来表示顶点,这样做的原因是:如果与邻接矩阵一样,用列表索引来区分不同顶点,那么假设要删除索引为 i
的顶点,则需遍历整个邻接表,将所有大于 i
的索引全部减 1
,效率很低。而如果每个顶点都是唯一的 Vertex
实例,删除某一顶点之后就无须改动其他顶点了。
[file]{graph_adjacency_list}-[class]{graph_adj_list}-[func]{}
效率对比
设图中共有 n
个顶点和 m
条边,下表对比了邻接矩阵和邻接表的时间效率和空间效率。
表 邻接矩阵与邻接表对比
邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) | |
---|---|---|---|
判断是否邻接 | O(1) |
O(m) |
O(1) |
添加边 | O(1) |
O(1) |
O(1) |
删除边 | O(1) |
O(m) |
O(1) |
添加顶点 | O(n) |
O(1) |
O(1) |
删除顶点 | O(n^2) |
O(n + m) |
O(n) |
内存空间占用 | O(n^2) |
O(n + m) |
O(n + m) |
观察上表,似乎邻接表(哈希表)的时间效率与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需一次数组访问或赋值操作即可。综合来看,邻接矩阵体现了“以空间换时间”的原则,而邻接表体现了“以时间换空间”的原则。