56 KiB
comments |
---|
true |
13.3 子集和问题
13.3.1 无重复元素的情况
!!! question
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。给定数组无重复元素,每个元素可以被选取多次。请以列表形式返回这些组合,列表中不应包含重复组合。
例如,输入集合 \{3, 4, 5\}
和目标整数 9
,解为 \{3, 3, 3\}, \{4, 5\}
。需要注意两点:
- 输入集合中的元素可以被无限次重复选取。
- 子集是不区分元素顺序的,比如
\{4, 5\}
和\{5, 4\}
是同一个子集。
1. 参考全排列解法
类似于全排列问题,我们可以把子集的生成过程想象成一系列选择的结果,并在选择过程中实时更新“元素和”,当元素和等于 target
时,就将子集记录至结果列表。
而与全排列问题不同的是,本题集合中的元素可以被无限次选取,因此无需借助 selected
布尔列表来记录元素是否已被选择。我们可以对全排列代码进行小幅修改,初步得到解题代码。
=== "Java"
```java title="subset_sum_i_naive.java"
/* 回溯算法:子集和 I */
void backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {
// 子集和等于 target 时,记录解
if (total == target) {
res.add(new ArrayList<>(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.length; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.remove(state.size() - 1);
}
}
/* 求解子集和 I(包含重复子集) */
List<List<Integer>> subsetSumINaive(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 状态(子集)
int total = 0; // 子集和
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "C++"
```cpp title="subset_sum_i_naive.cpp"
/* 回溯算法:子集和 I */
void backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {
// 子集和等于 target 时,记录解
if (total == target) {
res.push_back(state);
return;
}
// 遍历所有选择
for (size_t i = 0; i < choices.size(); i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.push_back(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.pop_back();
}
}
/* 求解子集和 I(包含重复子集) */
vector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {
vector<int> state; // 状态(子集)
int total = 0; // 子集和
vector<vector<int>> res; // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Python"
```python title="subset_sum_i_naive.py"
def backtrack(
state: list[int],
target: int,
total: int,
choices: list[int],
res: list[list[int]],
):
"""回溯算法:子集和 I"""
# 子集和等于 target 时,记录解
if total == target:
res.append(list(state))
return
# 遍历所有选择
for i in range(len(choices)):
# 剪枝:若子集和超过 target ,则跳过该选择
if total + choices[i] > target:
continue
# 尝试:做出选择,更新元素和 total
state.append(choices[i])
# 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res)
# 回退:撤销选择,恢复到之前的状态
state.pop()
def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I(包含重复子集)"""
state = [] # 状态(子集)
total = 0 # 子集和
res = [] # 结果列表(子集列表)
backtrack(state, target, total, nums, res)
return res
```
=== "Go"
```go title="subset_sum_i_naive.go"
/* 回溯算法:子集和 I */
func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {
// 子集和等于 target 时,记录解
if target == total {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 遍历所有选择
for i := 0; i < len(*choices); i++ {
// 剪枝:若子集和超过 target ,则跳过该选择
if total+(*choices)[i] > target {
continue
}
// 尝试:做出选择,更新元素和 total
*state = append(*state, (*choices)[i])
// 进行下一轮选择
backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)
// 回退:撤销选择,恢复到之前的状态
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 I(包含重复子集) */
func subsetSumINaive(nums []int, target int) [][]int {
state := make([]int, 0) // 状态(子集)
total := 0 // 子集和
res := make([][]int, 0) // 结果列表(子集列表)
backtrackSubsetSumINaive(total, target, &state, &nums, &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_i_naive.js"
/* 回溯算法:子集和 I */
function backtrack(state, target, total, choices, res) {
// 子集和等于 target 时,记录解
if (total === target) {
res.push([...state]);
return;
}
// 遍历所有选择
for (let i = 0; i < choices.length; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I(包含重复子集) */
function subsetSumINaive(nums, target) {
const state = []; // 状态(子集)
const total = 0; // 子集和
const res = []; // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_i_naive.ts"
/* 回溯算法:子集和 I */
function backtrack(
state: number[],
target: number,
total: number,
choices: number[],
res: number[][]
): void {
// 子集和等于 target 时,记录解
if (total === target) {
res.push([...state]);
return;
}
// 遍历所有选择
for (let i = 0; i < choices.length; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I(包含重复子集) */
function subsetSumINaive(nums: number[], target: number): number[][] {
const state = []; // 状态(子集)
const total = 0; // 子集和
const res = []; // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "C"
```c title="subset_sum_i_naive.c"
/* 回溯算法:子集和 I */
void backtrack(vector *state, int target, int total, vector *choices, vector *res) {
// 子集和等于 target 时,记录解
if (total == target) {
vector *tmpVector = newVector();
for (int i = 0; i < state->size; i++) {
vectorPushback(tmpVector, state->data[i], sizeof(int));
}
vectorPushback(res, tmpVector, sizeof(vector));
return;
}
// 遍历所有选择
for (size_t i = 0; i < choices->size; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + *(int *)(choices->data[i]) > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
vectorPushback(state, choices->data[i], sizeof(int));
// 进行下一轮选择
backtrack(state, target, total + *(int *)(choices->data[i]), choices, res);
// 回退:撤销选择,恢复到之前的状态
vectorPopback(state);
}
}
/* 求解子集和 I(包含重复子集) */
vector *subsetSumINaive(vector *nums, int target) {
vector *state = newVector(); // 状态(子集)
int total = 0; // 子集和
vector *res = newVector(); // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_i_naive.cs"
/* 回溯算法:子集和 I */
void backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {
// 子集和等于 target 时,记录解
if (total == target) {
res.Add(new List<int>(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.Length; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.Add(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 I(包含重复子集) */
List<List<int>> subsetSumINaive(int[] nums, int target) {
List<int> state = new List<int>(); // 状态(子集)
int total = 0; // 子集和
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Swift"
```swift title="subset_sum_i_naive.swift"
/* 回溯算法:子集和 I */
func backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {
// 子集和等于 target 时,记录解
if total == target {
res.append(state)
return
}
// 遍历所有选择
for i in stride(from: 0, to: choices.count, by: 1) {
// 剪枝:若子集和超过 target ,则跳过该选择
if total + choices[i] > target {
continue
}
// 尝试:做出选择,更新元素和 total
state.append(choices[i])
// 进行下一轮选择
backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)
// 回退:撤销选择,恢复到之前的状态
state.removeLast()
}
}
/* 求解子集和 I(包含重复子集) */
func subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 状态(子集)
let total = 0 // 子集和
var res: [[Int]] = [] // 结果列表(子集列表)
backtrack(state: &state, target: target, total: total, choices: nums, res: &res)
return res
}
```
=== "Zig"
```zig title="subset_sum_i_naive.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumINaive}
```
=== "Dart"
```dart title="subset_sum_i_naive.dart"
/* 回溯算法:子集和 I */
void backtrack(
List<int> state,
int target,
int total,
List<int> choices,
List<List<int>> res,
) {
// 子集和等于 target 时,记录解
if (total == target) {
res.add(List.from(state));
return;
}
// 遍历所有选择
for (int i = 0; i < choices.length; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (total + choices[i] > target) {
continue;
}
// 尝试:做出选择,更新元素和 total
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.removeLast();
}
}
/* 求解子集和 I(包含重复子集) */
List<List<int>> subsetSumINaive(List<int> nums, int target) {
List<int> state = []; // 状态(子集)
int total = 0; // 元素和
List<List<int>> res = []; // 结果列表(子集列表)
backtrack(state, target, total, nums, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_i_naive.rs"
/* 回溯算法:子集和 I */
fn backtrack(mut state: Vec<i32>, target: i32, total: i32, choices: &[i32], res: &mut Vec<Vec<i32>>) {
// 子集和等于 target 时,记录解
if total == target {
res.push(state);
return;
}
// 遍历所有选择
for i in 0..choices.len() {
// 剪枝:若子集和超过 target ,则跳过该选择
if total + choices[i] > target {
continue;
}
// 尝试:做出选择,更新元素和 total
state.push(choices[i]);
// 进行下一轮选择
backtrack(state.clone(), target, total + choices[i], choices, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I(包含重复子集) */
fn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 状态(子集)
let total = 0; // 子集和
let mut res = Vec::new(); // 结果列表(子集列表)
backtrack(state, target, total, nums, &mut res);
res
}
```
向以上代码输入数组 [3, 4, 5]
和目标元素 9
,输出结果为 [3, 3, 3], [4, 5], [5, 4]
。虽然成功找出了所有和为 9
的子集,但其中存在重复的子集 [4, 5]
和 [5, 4]
。
这是因为搜索过程是区分选择顺序的,然而子集不区分选择顺序。如下图所示,先选 4
后选 5
与先选 5
后选 4
是两个不同的分支,但两者对应同一个子集。
图:子集搜索与越界剪枝
为了去除重复子集,一种直接的思路是对结果列表进行去重。但这个方法效率很低,因为:
- 当数组元素较多,尤其是当
target
较大时,搜索过程会产生大量的重复子集。 - 比较子集(数组)的异同非常耗时,需要先排序数组,再比较数组中每个元素的异同。
2. 重复子集剪枝
我们考虑在搜索过程中通过剪枝进行去重。观察下图,重复子集是在以不同顺序选择数组元素时产生的,具体来看:
- 第一轮和第二轮分别选择
3
,4
,会生成包含这两个元素的所有子集,记为[3, 4, \cdots]
。 - 若第一轮选择
4
,则第二轮应该跳过3
,因为该选择产生的子集[4, 3, \cdots]
和1.
中生成的子集完全重复。
分支越靠右,需要排除的分支也越多,例如:
- 前两轮选择
3
,5
,生成子集[3, 5, \cdots]
。 - 前两轮选择
4
,5
,生成子集[4, 5, \cdots]
。 - 若第一轮选择
5
,则第二轮应该跳过3
和4
,因为子集[5, 3, \cdots]
和子集[5, 4, \cdots]
和1.
,2.
中生成的子集完全重复。
图:不同选择顺序导致的重复子集
总结来看,给定输入数组 [x_1, x_2, \cdots, x_n]
,设搜索过程中的选择序列为 [x_{i_1}, x_{i_2}, \cdots , x_{i_m}]
,则该选择序列需要满足 i_1 \leq i_2 \leq \cdots \leq i_m
,不满足该条件的选择序列都会造成重复,应当剪枝。
3. 代码实现
为实现该剪枝,我们初始化变量 start
,用于指示遍历起点。当做出选择 x_{i}
后,设定下一轮从索引 i
开始遍历。这样做就可以让选择序列满足 i_1 \leq i_2 \leq \cdots \leq i_m
,从而保证子集唯一。
除此之外,我们还对代码进行了两项优化:
- 在开启搜索前,先将数组
nums
排序。在遍历所有选择时,当子集和超过target
时直接结束循环,因为后边的元素更大,其子集和都一定会超过target
。 - 省去元素和变量
total
,通过在target
上执行减法来统计元素和,当target
等于0
时记录解。
=== "Java"
```java title="subset_sum_i.java"
/* 回溯算法:子集和 I */
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.add(new ArrayList<>(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.remove(state.size() - 1);
}
}
/* 求解子集和 I */
List<List<Integer>> subsetSumI(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 状态(子集)
Arrays.sort(nums); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C++"
```cpp title="subset_sum_i.cpp"
/* 回溯算法:子集和 I */
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.push_back(state);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (int i = start; i < choices.size(); i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.push_back(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.pop_back();
}
}
/* 求解子集和 I */
vector<vector<int>> subsetSumI(vector<int> &nums, int target) {
vector<int> state; // 状态(子集)
sort(nums.begin(), nums.end()); // 对 nums 进行排序
int start = 0; // 遍历起始点
vector<vector<int>> res; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Python"
```python title="subset_sum_i.py"
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯算法:子集和 I"""
# 子集和等于 target 时,记录解
if target == 0:
res.append(list(state))
return
# 遍历所有选择
# 剪枝二:从 start 开始遍历,避免生成重复子集
for i in range(start, len(choices)):
# 剪枝一:若子集和超过 target ,则直接结束循环
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0:
break
# 尝试:做出选择,更新 target, start
state.append(choices[i])
# 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res)
# 回退:撤销选择,恢复到之前的状态
state.pop()
def subset_sum_i(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I"""
state = [] # 状态(子集)
nums.sort() # 对 nums 进行排序
start = 0 # 遍历起始点
res = [] # 结果列表(子集列表)
backtrack(state, target, nums, start, res)
return res
```
=== "Go"
```go title="subset_sum_i.go"
/* 回溯算法:子集和 I */
func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {
// 子集和等于 target 时,记录解
if target == 0 {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for i := start; i < len(*choices); i++ {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target-(*choices)[i] < 0 {
break
}
// 尝试:做出选择,更新 target, start
*state = append(*state, (*choices)[i])
// 进行下一轮选择
backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)
// 回退:撤销选择,恢复到之前的状态
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 I */
func subsetSumI(nums []int, target int) [][]int {
state := make([]int, 0) // 状态(子集)
sort.Ints(nums) // 对 nums 进行排序
start := 0 // 遍历起始点
res := make([][]int, 0) // 结果列表(子集列表)
backtrackSubsetSumI(start, target, &state, &nums, &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_i.js"
/* 回溯算法:子集和 I */
function backtrack(state, target, choices, start, res) {
// 子集和等于 target 时,记录解
if (target === 0) {
res.push([...state]);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I */
function subsetSumI(nums, target) {
const state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
const start = 0; // 遍历起始点
const res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_i.ts"
/* 回溯算法:子集和 I */
function backtrack(
state: number[],
target: number,
choices: number[],
start: number,
res: number[][]
): void {
// 子集和等于 target 时,记录解
if (target === 0) {
res.push([...state]);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I */
function subsetSumI(nums: number[], target: number): number[][] {
const state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
const start = 0; // 遍历起始点
const res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C"
```c title="subset_sum_i.c"
/* 回溯算法:子集和 I */
void backtrack(vector *state, int target, vector *choices, int start, vector *res) {
// 子集和等于 target 时,记录解
if (target == 0) {
vector *tmpVector = newVector();
for (int i = 0; i < state->size; i++) {
vectorPushback(tmpVector, state->data[i], sizeof(int));
}
vectorPushback(res, tmpVector, sizeof(vector));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (int i = start; i < choices->size; i++) {
// 剪枝:若子集和超过 target ,则跳过该选择
if (target - *(int *)(choices->data[i]) < 0) {
break;
}
// 尝试:做出选择,更新 target, start
vectorPushback(state, choices->data[i], sizeof(int));
// 进行下一轮选择
backtrack(state, target - *(int *)(choices->data[i]), choices, i, res);
// 回退:撤销选择,恢复到之前的状态
vectorPopback(state);
}
}
/* 求解子集和 I */
vector *subsetSumI(vector *nums, int target) {
vector *state = newVector(); // 状态(子集)
qsort(nums->data, nums->size, sizeof(int *), comp); // 对 nums 进行排序
int start = 0; // 子集和
vector *res = newVector(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_i.cs"
/* 回溯算法:子集和 I */
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.Add(new List<int>(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (int i = start; i < choices.Length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.Add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 I */
List<List<int>> subsetSumI(int[] nums, int target) {
List<int> state = new List<int>(); // 状态(子集)
Array.Sort(nums); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Swift"
```swift title="subset_sum_i.swift"
/* 回溯算法:子集和 I */
func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {
// 子集和等于 target 时,记录解
if target == 0 {
res.append(state)
return
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for i in stride(from: start, to: choices.count, by: 1) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0 {
break
}
// 尝试:做出选择,更新 target, start
state.append(choices[i])
// 进行下一轮选择
backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)
// 回退:撤销选择,恢复到之前的状态
state.removeLast()
}
}
/* 求解子集和 I */
func subsetSumI(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 状态(子集)
let nums = nums.sorted() // 对 nums 进行排序
let start = 0 // 遍历起始点
var res: [[Int]] = [] // 结果列表(子集列表)
backtrack(state: &state, target: target, choices: nums, start: start, res: &res)
return res
}
```
=== "Zig"
```zig title="subset_sum_i.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumI}
```
=== "Dart"
```dart title="subset_sum_i.dart"
/* 回溯算法:子集和 I */
void backtrack(
List<int> state,
int target,
List<int> choices,
int start,
List<List<int>> res,
) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.add(List.from(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 尝试:做出选择,更新 target, start
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.removeLast();
}
}
/* 求解子集和 I */
List<List<int>> subsetSumI(List<int> nums, int target) {
List<int> state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<int>> res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_i.rs"
/* 回溯算法:子集和 I */
fn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {
// 子集和等于 target 时,记录解
if target == 0 {
res.push(state);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
for i in start..choices.len() {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0 {
break;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state.clone(), target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 I */
fn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 状态(子集)
nums.sort(); // 对 nums 进行排序
let start = 0; // 遍历起始点
let mut res = Vec::new(); // 结果列表(子集列表)
backtrack(state, target, nums, start, &mut res);
res
}
```
如下图所示,为将数组 [3, 4, 5]
和目标元素 9
输入到以上代码后的整体回溯过程。
图:子集和 I 回溯过程
13.3.2 考虑重复元素的情况
!!! question
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。**给定数组可能包含重复元素,每个元素只可被选择一次**。请以列表形式返回这些组合,列表中不应包含重复组合。
相比于上题,本题的输入数组可能包含重复元素,这引入了新的问题。例如,给定数组 [4, \hat{4}, 5]
和目标元素 9
,则现有代码的输出结果为 [4, 5], [\hat{4}, 5]
,出现了重复子集。
造成这种重复的原因是相等元素在某轮中被多次选择。如下图所示,第一轮共有三个选择,其中两个都为 4
,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 4
也会产生重复子集。
图:相等元素导致的重复子集
1. 相等元素剪枝
为解决此问题,我们需要限制相等元素在每一轮中只被选择一次。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。这意味着在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。
与此同时,本题规定中的每个数组元素只能被选择一次。幸运的是,我们也可以利用变量 start
来满足该约束:当做出选择 x_{i}
后,设定下一轮从索引 i + 1
开始向后遍历。这样即能去除重复子集,也能避免重复选择元素。
2. 代码实现
=== "Java"
```java title="subset_sum_ii.java"
/* 回溯算法:子集和 II */
void backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.add(new ArrayList<>(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.remove(state.size() - 1);
}
}
/* 求解子集和 II */
List<List<Integer>> subsetSumII(int[] nums, int target) {
List<Integer> state = new ArrayList<>(); // 状态(子集)
Arrays.sort(nums); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<Integer>> res = new ArrayList<>(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C++"
```cpp title="subset_sum_ii.cpp"
/* 回溯算法:子集和 II */
void backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.push_back(state);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (int i = start; i < choices.size(); i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.push_back(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.pop_back();
}
}
/* 求解子集和 II */
vector<vector<int>> subsetSumII(vector<int> &nums, int target) {
vector<int> state; // 状态(子集)
sort(nums.begin(), nums.end()); // 对 nums 进行排序
int start = 0; // 遍历起始点
vector<vector<int>> res; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Python"
```python title="subset_sum_ii.py"
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯算法:子集和 II"""
# 子集和等于 target 时,记录解
if target == 0:
res.append(list(state))
return
# 遍历所有选择
# 剪枝二:从 start 开始遍历,避免生成重复子集
# 剪枝三:从 start 开始遍历,避免重复选择同一元素
for i in range(start, len(choices)):
# 剪枝一:若子集和超过 target ,则直接结束循环
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0:
break
# 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if i > start and choices[i] == choices[i - 1]:
continue
# 尝试:做出选择,更新 target, start
state.append(choices[i])
# 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res)
# 回退:撤销选择,恢复到之前的状态
state.pop()
def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 II"""
state = [] # 状态(子集)
nums.sort() # 对 nums 进行排序
start = 0 # 遍历起始点
res = [] # 结果列表(子集列表)
backtrack(state, target, nums, start, res)
return res
```
=== "Go"
```go title="subset_sum_ii.go"
/* 回溯算法:子集和 II */
func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {
// 子集和等于 target 时,记录解
if target == 0 {
newState := append([]int{}, *state...)
*res = append(*res, newState)
return
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for i := start; i < len(*choices); i++ {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target-(*choices)[i] < 0 {
break
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if i > start && (*choices)[i] == (*choices)[i-1] {
continue
}
// 尝试:做出选择,更新 target, start
*state = append(*state, (*choices)[i])
// 进行下一轮选择
backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)
// 回退:撤销选择,恢复到之前的状态
*state = (*state)[:len(*state)-1]
}
}
/* 求解子集和 II */
func subsetSumII(nums []int, target int) [][]int {
state := make([]int, 0) // 状态(子集)
sort.Ints(nums) // 对 nums 进行排序
start := 0 // 遍历起始点
res := make([][]int, 0) // 结果列表(子集列表)
backtrackSubsetSumII(start, target, &state, &nums, &res)
return res
}
```
=== "JS"
```javascript title="subset_sum_ii.js"
/* 回溯算法:子集和 II */
function backtrack(state, target, choices, start, res) {
// 子集和等于 target 时,记录解
if (target === 0) {
res.push([...state]);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] === choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 II */
function subsetSumII(nums, target) {
const state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
const start = 0; // 遍历起始点
const res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "TS"
```typescript title="subset_sum_ii.ts"
/* 回溯算法:子集和 II */
function backtrack(
state: number[],
target: number,
choices: number[],
start: number,
res: number[][]
): void {
// 子集和等于 target 时,记录解
if (target === 0) {
res.push([...state]);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (let i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] === choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 II */
function subsetSumII(nums: number[], target: number): number[][] {
const state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
const start = 0; // 遍历起始点
const res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C"
```c title="subset_sum_ii.c"
/* 回溯算法:子集和 II */
void backtrack(vector *state, int target, vector *choices, int start, vector *res) {
// 子集和等于 target 时,记录解
if (target == 0) {
vector *tmpVector = newVector();
for (int i = 0; i < state->size; i++) {
vectorPushback(tmpVector, state->data[i], sizeof(int));
}
vectorPushback(res, tmpVector, sizeof(vector));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (int i = start; i < choices->size; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - *(int *)(choices->data[i]) < 0) {
continue;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && *(int *)(choices->data[i]) == *(int *)(choices->data[i - 1])) {
continue;
}
// 尝试:做出选择,更新 target, start
vectorPushback(state, choices->data[i], sizeof(int));
// 进行下一轮选择
backtrack(state, target - *(int *)(choices->data[i]), choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
vectorPopback(state);
}
}
/* 求解子集和 II */
vector *subsetSumII(vector *nums, int target) {
vector *state = newVector(); // 状态(子集)
qsort(nums->data, nums->size, sizeof(int *), comp); // 对 nums 进行排序
int start = 0; // 子集和
vector *res = newVector(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "C#"
```csharp title="subset_sum_ii.cs"
/* 回溯算法:子集和 II */
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.Add(new List<int>(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (int i = start; i < choices.Length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.Add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.RemoveAt(state.Count - 1);
}
}
/* 求解子集和 II */
List<List<int>> subsetSumII(int[] nums, int target) {
List<int> state = new List<int>(); // 状态(子集)
Array.Sort(nums); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Swift"
```swift title="subset_sum_ii.swift"
/* 回溯算法:子集和 II */
func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {
// 子集和等于 target 时,记录解
if target == 0 {
res.append(state)
return
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for i in stride(from: start, to: choices.count, by: 1) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0 {
break
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if i > start, choices[i] == choices[i - 1] {
continue
}
// 尝试:做出选择,更新 target, start
state.append(choices[i])
// 进行下一轮选择
backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)
// 回退:撤销选择,恢复到之前的状态
state.removeLast()
}
}
/* 求解子集和 II */
func subsetSumII(nums: [Int], target: Int) -> [[Int]] {
var state: [Int] = [] // 状态(子集)
let nums = nums.sorted() // 对 nums 进行排序
let start = 0 // 遍历起始点
var res: [[Int]] = [] // 结果列表(子集列表)
backtrack(state: &state, target: target, choices: nums, start: start, res: &res)
return res
}
```
=== "Zig"
```zig title="subset_sum_ii.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{subsetSumII}
```
=== "Dart"
```dart title="subset_sum_ii.dart"
/* 回溯算法:子集和 II */
void backtrack(
List<int> state,
int target,
List<int> choices,
int start,
List<List<int>> res,
) {
// 子集和等于 target 时,记录解
if (target == 0) {
res.add(List.from(state));
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for (int i = start; i < choices.length; i++) {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if (target - choices[i] < 0) {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if (i > start && choices[i] == choices[i - 1]) {
continue;
}
// 尝试:做出选择,更新 target, start
state.add(choices[i]);
// 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res);
// 回退:撤销选择,恢复到之前的状态
state.removeLast();
}
}
/* 求解子集和 II */
List<List<int>> subsetSumII(List<int> nums, int target) {
List<int> state = []; // 状态(子集)
nums.sort(); // 对 nums 进行排序
int start = 0; // 遍历起始点
List<List<int>> res = []; // 结果列表(子集列表)
backtrack(state, target, nums, start, res);
return res;
}
```
=== "Rust"
```rust title="subset_sum_ii.rs"
/* 回溯算法:子集和 II */
fn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {
// 子集和等于 target 时,记录解
if target == 0 {
res.push(state);
return;
}
// 遍历所有选择
// 剪枝二:从 start 开始遍历,避免生成重复子集
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
for i in start..choices.len() {
// 剪枝一:若子集和超过 target ,则直接结束循环
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0 {
break;
}
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if i > start && choices[i] == choices[i - 1] {
continue;
}
// 尝试:做出选择,更新 target, start
state.push(choices[i]);
// 进行下一轮选择
backtrack(state.clone(), target - choices[i], choices, i, res);
// 回退:撤销选择,恢复到之前的状态
state.pop();
}
}
/* 求解子集和 II */
fn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {
let state = Vec::new(); // 状态(子集)
nums.sort(); // 对 nums 进行排序
let start = 0; // 遍历起始点
let mut res = Vec::new(); // 结果列表(子集列表)
backtrack(state, target, nums, start, &mut res);
res
}
```
下图展示了数组 [4, 4, 5]
和目标元素 9
的回溯过程,共包含四种剪枝操作。请你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。
图:子集和 II 回溯过程