|
|
---
|
|
|
comments: true
|
|
|
---
|
|
|
|
|
|
# 线性查找
|
|
|
|
|
|
「线性查找 Linear Search」是一种最基础的查找方法,其从数据结构的一端开始,依次访问每个元素,直到另一端后停止。
|
|
|
|
|
|
## 算法实现
|
|
|
|
|
|
线性查找实质上就是遍历数据结构 + 判断条件。比如,我们想要在数组 `nums` 中查找目标元素 `target` 的对应索引,那么可以在数组中进行线性查找。
|
|
|
|
|
|
![linear_search](linear_search.assets/linear_search.png)
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="linear_search.java"
|
|
|
/* 线性查找(数组) */
|
|
|
int linearSearch(int[] nums, int target) {
|
|
|
// 遍历数组
|
|
|
for (int i = 0; i < nums.length; i++) {
|
|
|
// 找到目标元素,返回其索引
|
|
|
if (nums[i] == target)
|
|
|
return i;
|
|
|
}
|
|
|
// 未找到目标元素,返回 -1
|
|
|
return -1;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="linear_search.cpp"
|
|
|
/* 线性查找(数组) */
|
|
|
int linearSearch(vector<int>& nums, int target) {
|
|
|
// 遍历数组
|
|
|
for (int i = 0; i < nums.size(); i++) {
|
|
|
// 找到目标元素,返回其索引
|
|
|
if (nums[i] == target)
|
|
|
return i;
|
|
|
}
|
|
|
// 未找到目标元素,返回 -1
|
|
|
return -1;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="linear_search.py"
|
|
|
""" 线性查找(数组) """
|
|
|
def linear_search(nums, target):
|
|
|
# 遍历数组
|
|
|
for i in range(len(nums)):
|
|
|
if nums[i] == target: # 找到目标元素,返回其索引
|
|
|
return i
|
|
|
return -1 # 未找到目标元素,返回 -1
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="linear_search.go"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```js title="linear_search.js"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="linear_search.ts"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="linear_search.c"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="linear_search.cs"
|
|
|
|
|
|
```
|
|
|
|
|
|
再比如,我们想要在给定一个目标结点值 `target` ,返回此结点对象,也可以在链表中进行线性查找。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="linear_search.java"
|
|
|
/* 线性查找(链表) */
|
|
|
ListNode linearSearch(ListNode head, int target) {
|
|
|
// 遍历链表
|
|
|
while (head != null) {
|
|
|
// 找到目标结点,返回之
|
|
|
if (head.val == target)
|
|
|
return head;
|
|
|
head = head.next;
|
|
|
}
|
|
|
// 未找到目标结点,返回 null
|
|
|
return null;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="linear_search.cpp"
|
|
|
/* 线性查找(链表) */
|
|
|
ListNode* linearSearch(ListNode* head, int target) {
|
|
|
// 遍历链表
|
|
|
while (head != nullptr) {
|
|
|
// 找到目标结点,返回之
|
|
|
if (head->val == target)
|
|
|
return head;
|
|
|
head = head->next;
|
|
|
}
|
|
|
// 未找到目标结点,返回 nullptr
|
|
|
return nullptr;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="linear_search.py"
|
|
|
""" 线性查找(链表) """
|
|
|
def linear_search1(head, target):
|
|
|
# 遍历链表
|
|
|
while head:
|
|
|
if head.val == target: # 找到目标结点,返回之
|
|
|
return head
|
|
|
head = head.next
|
|
|
return None # 未找到目标结点,返回 None
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="linear_search.go"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```js title="linear_search.js"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="linear_search.ts"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="linear_search.c"
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="linear_search.cs"
|
|
|
|
|
|
```
|
|
|
|
|
|
## 复杂度分析
|
|
|
|
|
|
**时间复杂度 $O(n)$ :** 其中 $n$ 为数组或链表长度。
|
|
|
|
|
|
**空间复杂度 $O(1)$ :** 无需使用额外空间。
|
|
|
|
|
|
## 优缺点
|
|
|
|
|
|
**线性查找的通用性极佳。** 由于线性查找是依次访问元素的,即没有跳跃访问元素,因此数组或链表皆适用。
|
|
|
|
|
|
**线性查找的时间复杂度太高。** 在数据量 $n$ 很大时,查找效率很低。
|