You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_backtracking/n_queens_problem/index.html

2518 lines
196 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="一本动画图解、能运行、可提问的数据结构与算法入门书">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_backtracking/n_queens_problem/">
<link rel="prev" href="../permutations_problem/">
<link rel="next" href="../../chapter_appendix/installation/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.1.6">
<title>12.3.   N 皇后问题New - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.ded33207.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.a0c5b2b5.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#123-n" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
12.3. &nbsp; N 皇后问题New
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="" data-md-color-accent="" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<label class="md-nav__link" for="__nav_1" id="__nav_1_label" tabindex="0">
0. &nbsp; &nbsp; 写在前面
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
0. &nbsp; &nbsp; 写在前面
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
0.1. &nbsp; 关于本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
0.2. &nbsp; 如何使用本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
0.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<label class="md-nav__link" for="__nav_2" id="__nav_2_label" tabindex="0">
1. &nbsp; &nbsp; 引言
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
1. &nbsp; &nbsp; 引言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
1.1. &nbsp; 算法无处不在
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
1.2. &nbsp; 算法是什么
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
1.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0">
2. &nbsp; &nbsp; 复杂度分析
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
2. &nbsp; &nbsp; 复杂度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
2.1. &nbsp; 算法效率评估
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
2.2. &nbsp; 时间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
2.3. &nbsp; 空间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
2.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<label class="md-nav__link" for="__nav_4" id="__nav_4_label" tabindex="0">
3. &nbsp; &nbsp; 数据结构与类型
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
3. &nbsp; &nbsp; 数据结构与类型
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
3.1. &nbsp; 数据结构分类
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
3.2. &nbsp; 基本数据类型
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
3.3. &nbsp; 数字编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
3.4. &nbsp; 字符编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
3.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<label class="md-nav__link" for="__nav_5" id="__nav_5_label" tabindex="0">
4. &nbsp; &nbsp; 数组与链表
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
4. &nbsp; &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
4.1. &nbsp; 数组
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
4.2. &nbsp; 链表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
4.3. &nbsp; 列表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
4.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<label class="md-nav__link" for="__nav_6" id="__nav_6_label" tabindex="0">
5. &nbsp; &nbsp; 栈与队列
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
5. &nbsp; &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
5.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
5.2. &nbsp; 队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
5.3. &nbsp; 双向队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
5.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<label class="md-nav__link" for="__nav_7" id="__nav_7_label" tabindex="0">
6. &nbsp; &nbsp; 散列表
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
6.1. &nbsp; 哈希表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
6.2. &nbsp; 哈希冲突处理
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
6.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<label class="md-nav__link" for="__nav_8" id="__nav_8_label" tabindex="0">
7. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
7.1. &nbsp; 二叉树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
7.2. &nbsp; 二叉树遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
7.3. &nbsp; 二叉树数组表示
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
7.4. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
7.5. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
7.6. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<label class="md-nav__link" for="__nav_9" id="__nav_9_label" tabindex="0">
8. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
8.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
8.2. &nbsp; 建堆操作 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
8.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<label class="md-nav__link" for="__nav_10" id="__nav_10_label" tabindex="0">
9. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
9.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
9.2. &nbsp; 图基础操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
9.3. &nbsp; 图的遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
9.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<label class="md-nav__link" for="__nav_11" id="__nav_11_label" tabindex="0">
10. &nbsp; &nbsp; 搜索算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; &nbsp; 搜索算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
10.1. &nbsp; 二分查找New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
10.2. &nbsp; 二分查找边界New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
10.3. &nbsp; 哈希优化策略
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
10.4. &nbsp; 重识搜索算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
10.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<label class="md-nav__link" for="__nav_12" id="__nav_12_label" tabindex="0">
11. &nbsp; &nbsp; 排序算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
11. &nbsp; &nbsp; 排序算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
11.1. &nbsp; 排序算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
11.2. &nbsp; 选择排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
11.3. &nbsp; 冒泡排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
11.4. &nbsp; 插入排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
11.5. &nbsp; 快速排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
11.6. &nbsp; 归并排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
11.7. &nbsp; 桶排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
11.8. &nbsp; 计数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
11.9. &nbsp; 基数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
11.10. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" checked>
<label class="md-nav__link" for="__nav_13" id="__nav_13_label" tabindex="0">
12. &nbsp; &nbsp; 回溯算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 回溯算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../backtracking_algorithm/" class="md-nav__link">
12.1. &nbsp; 回溯算法New
</a>
</li>
<li class="md-nav__item">
<a href="../permutations_problem/" class="md-nav__link">
12.2. &nbsp; 全排列问题New
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
12.3. &nbsp; N 皇后问题New
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
12.3. &nbsp; N 皇后问题New
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1231" class="md-nav__link">
12.3.1. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<label class="md-nav__link" for="__nav_14" id="__nav_14_label" tabindex="0">
13. &nbsp; &nbsp; 附录
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
13.1. &nbsp; 编程环境安装
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
13.2. &nbsp; 一起参与创作
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_reference/">参考文献</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1231" class="md-nav__link">
12.3.1. &nbsp; 复杂度分析
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_backtracking/n_queens_problem.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="123-n">12.3. &nbsp; N 皇后问题<a class="headerlink" href="#123-n" title="Permanent link">&para;</a></h1>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 <span class="arithmatex">\(n\)</span> 个皇后和一个 <span class="arithmatex">\(n \times n\)</span> 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。</p>
</div>
<p>如下图所示,当 <span class="arithmatex">\(n = 4\)</span> 时,共可以找到两个解。从回溯算法的角度看,<span class="arithmatex">\(n \times n\)</span> 大小的棋盘共有 <span class="arithmatex">\(n^2\)</span> 个格子,给出了所有的选择 <code>choices</code> 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 <code>state</code></p>
<p><img alt="4 皇后问题的解" src="../n_queens_problem.assets/solution_4_queens.png" /></p>
<p align="center"> Fig. 4 皇后问题的解 </p>
<p>本题共有三个约束条件:<strong>多个皇后不能在同一行、同一列和同一对角线</strong>。值得注意的是,对角线分为主对角线 <code>\</code> 和副对角线 <code>/</code> 两种。</p>
<p><img alt="n 皇后问题的约束条件" src="../n_queens_problem.assets/n_queens_constraints.png" /></p>
<p align="center"> Fig. n 皇后问题的约束条件 </p>
<p>皇后的数量和棋盘的行数都为 <span class="arithmatex">\(n\)</span> ,因此我们容易得到第一个推论:<strong>棋盘每行都允许且只允许放置一个皇后</strong>。这意味着,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。<strong>此策略起到了剪枝的作用</strong>,它避免了同一行出现多个皇后的所有搜索分支。</p>
<p>下图展示了 <span class="arithmatex">\(4\)</span> 皇后问题的逐行放置过程。受篇幅限制,下图仅展开了第一行的一个搜索分支。在搜索过程中,我们将不满足列约束和对角线约束的方案都剪枝了。</p>
<p><img alt="逐行放置策略" src="../n_queens_problem.assets/n_queens_placing.png" /></p>
<p align="center"> Fig. 逐行放置策略 </p>
<p>为了实现根据列约束剪枝,我们可以利用一个长度为 <span class="arithmatex">\(n\)</span> 的布尔型数组 <code>cols</code> 记录每一列是否有皇后。在每次决定放置前,我们通过 <code>cols</code> 将已有皇后的列剪枝,并在回溯中动态更新 <code>cols</code> 的状态。</p>
<p>那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 <code>(row, col)</code> ,观察矩阵的某条主对角线,<strong>我们发现该对角线上所有格子的行索引减列索引相等</strong>,即 <code>row - col</code> 为恒定值。换句话说,若两个格子满足 <code>row1 - col1 == row2 - col2</code> ,则这两个格子一定处在一条主对角线上。</p>
<p>利用该性质,我们可以借助一个数组 <code>diag1</code> 来记录每条主对角线上是否有皇后。注意,<span class="arithmatex">\(n\)</span> 维方阵 <code>row - col</code> 的范围是 <span class="arithmatex">\([-n + 1, n - 1]\)</span> ,因此共有 <span class="arithmatex">\(2n - 1\)</span> 条主对角线。</p>
<p><img alt="处理列约束和对角线约束" src="../n_queens_problem.assets/n_queens_cols_diagonals.png" /></p>
<p align="center"> Fig. 处理列约束和对角线约束 </p>
<p>同理,<strong>次对角线上的所有格子的 <code>row + col</code> 是恒定值</strong>。我们可以使用同样的方法,借助数组 <code>diag2</code> 来处理次对角线约束。</p>
<p>根据以上分析,我们便可以写出 <span class="arithmatex">\(n\)</span> 皇后的解题代码。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:10"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">);</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-0-26" name="__codelineno-0-26" href="#__codelineno-0-26"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">get</span><span class="p">(</span><span class="n">row</span><span class="p">).</span><span class="na">set</span><span class="p">(</span><span class="n">col</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-0-27" name="__codelineno-0-27" href="#__codelineno-0-27"></a><span class="w"> </span><span class="n">cols</span><span class="o">[</span><span class="n">col</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="o">[</span><span class="n">diag1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="o">[</span><span class="n">diag2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-0-28" name="__codelineno-0-28" href="#__codelineno-0-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-29" name="__codelineno-0-29" href="#__codelineno-0-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-30" name="__codelineno-0-30" href="#__codelineno-0-30"></a><span class="p">}</span>
<a id="__codelineno-0-31" name="__codelineno-0-31" href="#__codelineno-0-31"></a>
<a id="__codelineno-0-32" name="__codelineno-0-32" href="#__codelineno-0-32"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-0-33" name="__codelineno-0-33" href="#__codelineno-0-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="nf">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-34" name="__codelineno-0-34" href="#__codelineno-0-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-0-35" name="__codelineno-0-35" href="#__codelineno-0-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-36" name="__codelineno-0-36" href="#__codelineno-0-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-37" name="__codelineno-0-37" href="#__codelineno-0-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-38" name="__codelineno-0-38" href="#__codelineno-0-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-39" name="__codelineno-0-39" href="#__codelineno-0-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-0-40" name="__codelineno-0-40" href="#__codelineno-0-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-41" name="__codelineno-0-41" href="#__codelineno-0-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="na">add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-0-42" name="__codelineno-0-42" href="#__codelineno-0-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-43" name="__codelineno-0-43" href="#__codelineno-0-43"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-0-44" name="__codelineno-0-44" href="#__codelineno-0-44"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-0-45" name="__codelineno-0-45" href="#__codelineno-0-45"></a><span class="w"> </span><span class="kt">boolean</span><span class="o">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">boolean</span><span class="o">[</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-0-46" name="__codelineno-0-46" href="#__codelineno-0-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">String</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-0-47" name="__codelineno-0-47" href="#__codelineno-0-47"></a>
<a id="__codelineno-0-48" name="__codelineno-0-48" href="#__codelineno-0-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-0-49" name="__codelineno-0-49" href="#__codelineno-0-49"></a>
<a id="__codelineno-0-50" name="__codelineno-0-50" href="#__codelineno-0-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-0-51" name="__codelineno-0-51" href="#__codelineno-0-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">cols</span><span class="p">,</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">push_back</span><span class="p">(</span><span class="n">state</span><span class="p">);</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">true</span><span class="p">;</span>
<a id="__codelineno-1-19" name="__codelineno-1-19" href="#__codelineno-1-19"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-1-20" name="__codelineno-1-20" href="#__codelineno-1-20"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-21" name="__codelineno-1-21" href="#__codelineno-1-21"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-1-22" name="__codelineno-1-22" href="#__codelineno-1-22"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-1-23" name="__codelineno-1-23" href="#__codelineno-1-23"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">false</span><span class="p">;</span>
<a id="__codelineno-1-24" name="__codelineno-1-24" href="#__codelineno-1-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-25" name="__codelineno-1-25" href="#__codelineno-1-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-26" name="__codelineno-1-26" href="#__codelineno-1-26"></a><span class="p">}</span>
<a id="__codelineno-1-27" name="__codelineno-1-27" href="#__codelineno-1-27"></a>
<a id="__codelineno-1-28" name="__codelineno-1-28" href="#__codelineno-1-28"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-1-29" name="__codelineno-1-29" href="#__codelineno-1-29"></a><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-30" name="__codelineno-1-30" href="#__codelineno-1-30"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-1-31" name="__codelineno-1-31" href="#__codelineno-1-31"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">));</span>
<a id="__codelineno-1-32" name="__codelineno-1-32" href="#__codelineno-1-32"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">cols</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-1-33" name="__codelineno-1-33" href="#__codelineno-1-33"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags1</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-1-34" name="__codelineno-1-34" href="#__codelineno-1-34"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">bool</span><span class="o">&gt;</span><span class="w"> </span><span class="n">diags2</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-1-35" name="__codelineno-1-35" href="#__codelineno-1-35"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-36" name="__codelineno-1-36" href="#__codelineno-1-36"></a>
<a id="__codelineno-1-37" name="__codelineno-1-37" href="#__codelineno-1-37"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-1-38" name="__codelineno-1-38" href="#__codelineno-1-38"></a>
<a id="__codelineno-1-39" name="__codelineno-1-39" href="#__codelineno-1-39"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-1-40" name="__codelineno-1-40" href="#__codelineno-1-40"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a> <span class="n">row</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="n">state</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">res</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="n">cols</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="n">diags1</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="n">diags2</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="p">):</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;回溯算法N 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="c1"># 当放置完所有行时,记录解</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="k">if</span> <span class="n">row</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="n">res</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="nb">list</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">state</span><span class="p">])</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a> <span class="k">return</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a> <span class="c1"># 遍历所有列</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a> <span class="c1"># 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a> <span class="n">diag1</span> <span class="o">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-2-19" name="__codelineno-2-19" href="#__codelineno-2-19"></a> <span class="n">diag2</span> <span class="o">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-2-20" name="__codelineno-2-20" href="#__codelineno-2-20"></a> <span class="c1"># 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-2-21" name="__codelineno-2-21" href="#__codelineno-2-21"></a> <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="ow">or</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="ow">or</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]):</span>
<a id="__codelineno-2-22" name="__codelineno-2-22" href="#__codelineno-2-22"></a> <span class="c1"># 尝试:将皇后放置在该格子</span>
<a id="__codelineno-2-23" name="__codelineno-2-23" href="#__codelineno-2-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;Q&quot;</span>
<a id="__codelineno-2-24" name="__codelineno-2-24" href="#__codelineno-2-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<a id="__codelineno-2-25" name="__codelineno-2-25" href="#__codelineno-2-25"></a> <span class="c1"># 放置下一行</span>
<a id="__codelineno-2-26" name="__codelineno-2-26" href="#__codelineno-2-26"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-2-27" name="__codelineno-2-27" href="#__codelineno-2-27"></a> <span class="c1"># 回退:将该格子恢复为空位</span>
<a id="__codelineno-2-28" name="__codelineno-2-28" href="#__codelineno-2-28"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;#&quot;</span>
<a id="__codelineno-2-29" name="__codelineno-2-29" href="#__codelineno-2-29"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">=</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<a id="__codelineno-2-30" name="__codelineno-2-30" href="#__codelineno-2-30"></a>
<a id="__codelineno-2-31" name="__codelineno-2-31" href="#__codelineno-2-31"></a><span class="k">def</span> <span class="nf">n_queens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]:</span>
<a id="__codelineno-2-32" name="__codelineno-2-32" href="#__codelineno-2-32"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;求解 N 皇后&quot;&quot;&quot;</span>
<a id="__codelineno-2-33" name="__codelineno-2-33" href="#__codelineno-2-33"></a> <span class="c1"># 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-2-34" name="__codelineno-2-34" href="#__codelineno-2-34"></a> <span class="n">state</span> <span class="o">=</span> <span class="p">[[</span><span class="s2">&quot;#&quot;</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
<a id="__codelineno-2-35" name="__codelineno-2-35" href="#__codelineno-2-35"></a> <span class="n">cols</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="n">n</span> <span class="c1"># 记录列是否有皇后</span>
<a id="__codelineno-2-36" name="__codelineno-2-36" href="#__codelineno-2-36"></a> <span class="n">diags1</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录主对角线是否有皇后</span>
<a id="__codelineno-2-37" name="__codelineno-2-37" href="#__codelineno-2-37"></a> <span class="n">diags2</span> <span class="o">=</span> <span class="p">[</span><span class="kc">False</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># 记录副对角线是否有皇后</span>
<a id="__codelineno-2-38" name="__codelineno-2-38" href="#__codelineno-2-38"></a> <span class="n">res</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-2-39" name="__codelineno-2-39" href="#__codelineno-2-39"></a> <span class="n">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-2-40" name="__codelineno-2-40" href="#__codelineno-2-40"></a>
<a id="__codelineno-2-41" name="__codelineno-2-41" href="#__codelineno-2-41"></a> <span class="k">return</span> <span class="n">res</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!((</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="p">}</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a>
<a id="__codelineno-3-32" name="__codelineno-3-32" href="#__codelineno-3-32"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-33" name="__codelineno-3-33" href="#__codelineno-3-33"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-34" name="__codelineno-3-34" href="#__codelineno-3-34"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-35" name="__codelineno-3-35" href="#__codelineno-3-35"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-36" name="__codelineno-3-36" href="#__codelineno-3-36"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-37" name="__codelineno-3-37" href="#__codelineno-3-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-38" name="__codelineno-3-38" href="#__codelineno-3-38"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-39" name="__codelineno-3-39" href="#__codelineno-3-39"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-40" name="__codelineno-3-40" href="#__codelineno-3-40"></a>
<a id="__codelineno-3-41" name="__codelineno-3-41" href="#__codelineno-3-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-42" name="__codelineno-3-42" href="#__codelineno-3-42"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-43" name="__codelineno-3-43" href="#__codelineno-3-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-44" name="__codelineno-3-44" href="#__codelineno-3-44"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-45" name="__codelineno-3-45" href="#__codelineno-3-45"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-46" name="__codelineno-3-46" href="#__codelineno-3-46"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-47" name="__codelineno-3-47" href="#__codelineno-3-47"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-48" name="__codelineno-3-48" href="#__codelineno-3-48"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-49" name="__codelineno-3-49" href="#__codelineno-3-49"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-3-50" name="__codelineno-3-50" href="#__codelineno-3-50"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!((</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-51" name="__codelineno-3-51" href="#__codelineno-3-51"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-52" name="__codelineno-3-52" href="#__codelineno-3-52"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-53" name="__codelineno-3-53" href="#__codelineno-3-53"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-54" name="__codelineno-3-54" href="#__codelineno-3-54"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-55" name="__codelineno-3-55" href="#__codelineno-3-55"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-56" name="__codelineno-3-56" href="#__codelineno-3-56"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-57" name="__codelineno-3-57" href="#__codelineno-3-57"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-58" name="__codelineno-3-58" href="#__codelineno-3-58"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-59" name="__codelineno-3-59" href="#__codelineno-3-59"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-60" name="__codelineno-3-60" href="#__codelineno-3-60"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-61" name="__codelineno-3-61" href="#__codelineno-3-61"></a><span class="p">}</span>
<a id="__codelineno-3-62" name="__codelineno-3-62" href="#__codelineno-3-62"></a>
<a id="__codelineno-3-63" name="__codelineno-3-63" href="#__codelineno-3-63"></a><span class="kd">func</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[][][]</span><span class="kt">string</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-64" name="__codelineno-3-64" href="#__codelineno-3-64"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-3-65" name="__codelineno-3-65" href="#__codelineno-3-65"></a><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-66" name="__codelineno-3-66" href="#__codelineno-3-66"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-67" name="__codelineno-3-67" href="#__codelineno-3-67"></a><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-68" name="__codelineno-3-68" href="#__codelineno-3-68"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-69" name="__codelineno-3-69" href="#__codelineno-3-69"></a><span class="w"> </span><span class="nx">row</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-70" name="__codelineno-3-70" href="#__codelineno-3-70"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-71" name="__codelineno-3-71" href="#__codelineno-3-71"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">row</span>
<a id="__codelineno-3-72" name="__codelineno-3-72" href="#__codelineno-3-72"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-73" name="__codelineno-3-73" href="#__codelineno-3-73"></a><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-3-74" name="__codelineno-3-74" href="#__codelineno-3-74"></a><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-75" name="__codelineno-3-75" href="#__codelineno-3-75"></a><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-76" name="__codelineno-3-76" href="#__codelineno-3-76"></a><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-77" name="__codelineno-3-77" href="#__codelineno-3-77"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-3-78" name="__codelineno-3-78" href="#__codelineno-3-78"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-79" name="__codelineno-3-79" href="#__codelineno-3-79"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-3-80" name="__codelineno-3-80" href="#__codelineno-3-80"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="p">}</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a>
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-4-31" name="__codelineno-4-31" href="#__codelineno-4-31"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-4-32" name="__codelineno-4-32" href="#__codelineno-4-32"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-4-33" name="__codelineno-4-33" href="#__codelineno-4-33"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-4-34" name="__codelineno-4-34" href="#__codelineno-4-34"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-4-35" name="__codelineno-4-35" href="#__codelineno-4-35"></a>
<a id="__codelineno-4-36" name="__codelineno-4-36" href="#__codelineno-4-36"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-37" name="__codelineno-4-37" href="#__codelineno-4-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-4-38" name="__codelineno-4-38" href="#__codelineno-4-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">row</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">state</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][],</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][],</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="nx">cols</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="nx">diags1</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="nx">diags2</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[]</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-33" name="__codelineno-5-33" href="#__codelineno-5-33"></a><span class="p">}</span>
<a id="__codelineno-5-34" name="__codelineno-5-34" href="#__codelineno-5-34"></a>
<a id="__codelineno-5-35" name="__codelineno-5-35" href="#__codelineno-5-35"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-5-36" name="__codelineno-5-36" href="#__codelineno-5-36"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-37" name="__codelineno-5-37" href="#__codelineno-5-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-5-38" name="__codelineno-5-38" href="#__codelineno-5-38"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-5-39" name="__codelineno-5-39" href="#__codelineno-5-39"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-5-40" name="__codelineno-5-40" href="#__codelineno-5-40"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-5-41" name="__codelineno-5-41" href="#__codelineno-5-41"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-5-42" name="__codelineno-5-42" href="#__codelineno-5-42"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-5-43" name="__codelineno-5-43" href="#__codelineno-5-43"></a>
<a id="__codelineno-5-44" name="__codelineno-5-44" href="#__codelineno-5-44"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-45" name="__codelineno-5-45" href="#__codelineno-5-45"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-5-46" name="__codelineno-5-46" href="#__codelineno-5-46"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">row</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">,</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">copyState</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">sRow</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">state</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="n">copyState</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">(</span><span class="n">sRow</span><span class="p">));</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">copyState</span><span class="p">);</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">col</span><span class="p">;</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span><span class="p">;</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">true</span><span class="p">;</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span><span class="p">;</span>
<a id="__codelineno-7-27" name="__codelineno-7-27" href="#__codelineno-7-27"></a><span class="w"> </span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">false</span><span class="p">;</span>
<a id="__codelineno-7-28" name="__codelineno-7-28" href="#__codelineno-7-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-29" name="__codelineno-7-29" href="#__codelineno-7-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-30" name="__codelineno-7-30" href="#__codelineno-7-30"></a><span class="p">}</span>
<a id="__codelineno-7-31" name="__codelineno-7-31" href="#__codelineno-7-31"></a>
<a id="__codelineno-7-32" name="__codelineno-7-32" href="#__codelineno-7-32"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-7-33" name="__codelineno-7-33" href="#__codelineno-7-33"></a><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">nQueens</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-34" name="__codelineno-7-34" href="#__codelineno-7-34"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-7-35" name="__codelineno-7-35" href="#__codelineno-7-35"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-36" name="__codelineno-7-36" href="#__codelineno-7-36"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-37" name="__codelineno-7-37" href="#__codelineno-7-37"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="w"> </span><span class="n">row</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-7-38" name="__codelineno-7-38" href="#__codelineno-7-38"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-39" name="__codelineno-7-39" href="#__codelineno-7-39"></a><span class="w"> </span><span class="n">row</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="s">&quot;#&quot;</span><span class="p">);</span>
<a id="__codelineno-7-40" name="__codelineno-7-40" href="#__codelineno-7-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-41" name="__codelineno-7-41" href="#__codelineno-7-41"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">row</span><span class="p">);</span>
<a id="__codelineno-7-42" name="__codelineno-7-42" href="#__codelineno-7-42"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-43" name="__codelineno-7-43" href="#__codelineno-7-43"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-7-44" name="__codelineno-7-44" href="#__codelineno-7-44"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-7-45" name="__codelineno-7-45" href="#__codelineno-7-45"></a><span class="w"> </span><span class="kt">bool</span><span class="p">[]</span><span class="w"> </span><span class="n">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">bool</span><span class="p">[</span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-7-46" name="__codelineno-7-46" href="#__codelineno-7-46"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">string</span><span class="o">&gt;&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-7-47" name="__codelineno-7-47" href="#__codelineno-7-47"></a>
<a id="__codelineno-7-48" name="__codelineno-7-48" href="#__codelineno-7-48"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">,</span><span class="w"> </span><span class="n">cols</span><span class="p">,</span><span class="w"> </span><span class="n">diags1</span><span class="p">,</span><span class="w"> </span><span class="n">diags2</span><span class="p">);</span>
<a id="__codelineno-7-49" name="__codelineno-7-49" href="#__codelineno-7-49"></a>
<a id="__codelineno-7-50" name="__codelineno-7-50" href="#__codelineno-7-50"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-7-51" name="__codelineno-7-51" href="#__codelineno-7-51"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kd">func</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[</span><span class="nb">String</span><span class="p">]],</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]],</span> <span class="n">cols</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags1</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags2</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a> <span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="k">if</span> <span class="n">row</span> <span class="p">==</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="k">return</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="p">}</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="c1">// 遍历所有列</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="k">for</span> <span class="n">col</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a> <span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a> <span class="kd">let</span> <span class="nv">diag1</span> <span class="p">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a> <span class="kd">let</span> <span class="nv">diag2</span> <span class="p">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="k">if</span> <span class="o">!</span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">||</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">||</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a> <span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;Q&quot;</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a> <span class="c1">// 放置下一行</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a> <span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;#&quot;</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-26" name="__codelineno-8-26" href="#__codelineno-8-26"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-27" name="__codelineno-8-27" href="#__codelineno-8-27"></a> <span class="p">}</span>
<a id="__codelineno-8-28" name="__codelineno-8-28" href="#__codelineno-8-28"></a> <span class="p">}</span>
<a id="__codelineno-8-29" name="__codelineno-8-29" href="#__codelineno-8-29"></a><span class="p">}</span>
<a id="__codelineno-8-30" name="__codelineno-8-30" href="#__codelineno-8-30"></a>
<a id="__codelineno-8-31" name="__codelineno-8-31" href="#__codelineno-8-31"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-8-32" name="__codelineno-8-32" href="#__codelineno-8-32"></a><span class="kd">func</span> <span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">{</span>
<a id="__codelineno-8-33" name="__codelineno-8-33" href="#__codelineno-8-33"></a> <span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-8-34" name="__codelineno-8-34" href="#__codelineno-8-34"></a> <span class="kd">var</span> <span class="nv">state</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="s">&quot;#&quot;</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-8-35" name="__codelineno-8-35" href="#__codelineno-8-35"></a> <span class="kd">var</span> <span class="nv">cols</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span> <span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-8-36" name="__codelineno-8-36" href="#__codelineno-8-36"></a> <span class="kd">var</span> <span class="nv">diags1</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-8-37" name="__codelineno-8-37" href="#__codelineno-8-37"></a> <span class="kd">var</span> <span class="nv">diags2</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-8-38" name="__codelineno-8-38" href="#__codelineno-8-38"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-8-39" name="__codelineno-8-39" href="#__codelineno-8-39"></a>
<a id="__codelineno-8-40" name="__codelineno-8-40" href="#__codelineno-8-40"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-41" name="__codelineno-8-41" href="#__codelineno-8-41"></a>
<a id="__codelineno-8-42" name="__codelineno-8-42" href="#__codelineno-8-42"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-8-43" name="__codelineno-8-43" href="#__codelineno-8-43"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h2 id="1231">12.3.1. &nbsp; 复杂度分析<a class="headerlink" href="#1231" title="Permanent link">&para;</a></h2>
<p>逐行放置 <span class="arithmatex">\(n\)</span> 次,考虑列约束,则从第一行到最后一行分别有 <span class="arithmatex">\(n, n-1, \cdots, 2, 1\)</span> 个选择,<strong>因此时间复杂度为 <span class="arithmatex">\(O(n!)\)</span></strong> 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。</p>
<p><code>state</code> 使用 <span class="arithmatex">\(O(n^2)\)</span> 空间,<code>cols</code> , <code>diags1</code> , <code>diags2</code> 皆使用 <span class="arithmatex">\(O(n)\)</span> 空间。最大递归深度为 <span class="arithmatex">\(n\)</span> ,使用 <span class="arithmatex">\(O(n)\)</span> 栈帧空间。因此,<strong>空间复杂度为 <span class="arithmatex">\(O(n^2)\)</span></strong></p>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="bottom"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../permutations_problem/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 12.2. &amp;nbsp; 全排列问题New" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
12.2. &nbsp; 全排列问题New
</div>
</div>
</a>
<a href="../../chapter_appendix/installation/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.1. &amp;nbsp; 编程环境安装" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
13.1. &nbsp; 编程环境安装
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.sections", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208ed371.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.51198bba.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>