You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
687 lines
34 KiB
687 lines
34 KiB
---
|
|
comments: true
|
|
---
|
|
|
|
# 10.2 Binary search insertion
|
|
|
|
Binary search is not only used to search for target elements but also to solve many variant problems, such as searching for the insertion position of target elements.
|
|
|
|
## 10.2.1 Case with no duplicate elements
|
|
|
|
!!! question
|
|
|
|
Given an ordered array `nums` of length $n$ and an element `target`, where the array has no duplicate elements. Now insert `target` into the array `nums` while maintaining its order. If the element `target` already exists in the array, insert it to its left side. Please return the index of `target` in the array after insertion. See the example shown in the Figure 10-4 .
|
|
|
|
![Example data for binary search insertion point](binary_search_insertion.assets/binary_search_insertion_example.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 10-4 Example data for binary search insertion point </p>
|
|
|
|
If you want to reuse the binary search code from the previous section, you need to answer the following two questions.
|
|
|
|
**Question one**: When the array contains `target`, is the insertion point index the index of that element?
|
|
|
|
The requirement to insert `target` to the left of equal elements means that the newly inserted `target` replaces the original `target` position. Thus, **when the array contains `target`, the insertion point index is the index of that `target`**.
|
|
|
|
**Question two**: When the array does not contain `target`, what is the index of the insertion point?
|
|
|
|
Further consider the binary search process: when `nums[m] < target`, pointer $i$ moves, meaning that pointer $i$ is approaching an element greater than or equal to `target`. Similarly, pointer $j$ is always approaching an element less than or equal to `target`.
|
|
|
|
Therefore, at the end of the binary, it is certain that: $i$ points to the first element greater than `target`, and $j$ points to the first element less than `target`. **It is easy to see that when the array does not contain `target`, the insertion index is $i$**. The code is as follows:
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_search_insertion.py"
|
|
def binary_search_insertion_simple(nums: list[int], target: int) -> int:
|
|
"""二分查找插入点(无重复元素)"""
|
|
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
|
|
while i <= j:
|
|
m = (i + j) // 2 # 计算中点索引 m
|
|
if nums[m] < target:
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
elif nums[m] > target:
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
else:
|
|
return m # 找到 target ,返回插入点 m
|
|
# 未找到 target ,返回插入点 i
|
|
return i
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_search_insertion.cpp"
|
|
/* 二分查找插入点(无重复元素) */
|
|
int binarySearchInsertionSimple(vector<int> &nums, int target) {
|
|
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_search_insertion.java"
|
|
/* 二分查找插入点(无重复元素) */
|
|
int binarySearchInsertionSimple(int[] nums, int target) {
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_search_insertion.cs"
|
|
/* 二分查找插入点(无重复元素) */
|
|
int BinarySearchInsertionSimple(int[] nums, int target) {
|
|
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_search_insertion.go"
|
|
/* 二分查找插入点(无重复元素) */
|
|
func binarySearchInsertionSimple(nums []int, target int) int {
|
|
// 初始化双闭区间 [0, n-1]
|
|
i, j := 0, len(nums)-1
|
|
for i <= j {
|
|
// 计算中点索引 m
|
|
m := i + (j-i)/2
|
|
if nums[m] < target {
|
|
// target 在区间 [m+1, j] 中
|
|
i = m + 1
|
|
} else if nums[m] > target {
|
|
// target 在区间 [i, m-1] 中
|
|
j = m - 1
|
|
} else {
|
|
// 找到 target ,返回插入点 m
|
|
return m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_search_insertion.swift"
|
|
/* 二分查找插入点(无重复元素) */
|
|
func binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {
|
|
// 初始化双闭区间 [0, n-1]
|
|
var i = nums.startIndex
|
|
var j = nums.endIndex - 1
|
|
while i <= j {
|
|
let m = i + (j - i) / 2 // 计算中点索引 m
|
|
if nums[m] < target {
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
} else if nums[m] > target {
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_search_insertion.js"
|
|
/* 二分查找插入点(无重复元素) */
|
|
function binarySearchInsertionSimple(nums, target) {
|
|
let i = 0,
|
|
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_search_insertion.ts"
|
|
/* 二分查找插入点(无重复元素) */
|
|
function binarySearchInsertionSimple(
|
|
nums: Array<number>,
|
|
target: number
|
|
): number {
|
|
let i = 0,
|
|
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_search_insertion.dart"
|
|
/* 二分查找插入点(无重复元素) */
|
|
int binarySearchInsertionSimple(List<int> nums, int target) {
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) ~/ 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_search_insertion.rs"
|
|
/* 二分查找插入点(无重复元素) */
|
|
fn binary_search_insertion_simple(nums: &[i32], target: i32) -> i32 {
|
|
let (mut i, mut j) = (0, nums.len() as i32 - 1); // 初始化双闭区间 [0, n-1]
|
|
while i <= j {
|
|
let m = i + (j - i) / 2; // 计算中点索引 m
|
|
if nums[m as usize] < target {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if nums[m as usize] > target {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m;
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
i
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_search_insertion.c"
|
|
/* 二分查找插入点(无重复元素) */
|
|
int binarySearchInsertionSimple(int *nums, int numSize, int target) {
|
|
int i = 0, j = numSize - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m; // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_search_insertion.kt"
|
|
/* 二分查找插入点(无重复元素) */
|
|
fun binarySearchInsertionSimple(nums: IntArray, target: Int): Int {
|
|
var i = 0
|
|
var j = nums.size - 1 // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
val m = i + (j - i) / 2 // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
} else {
|
|
return m // 找到 target ,返回插入点 m
|
|
}
|
|
}
|
|
// 未找到 target ,返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_search_insertion.rb"
|
|
### 二分查找插入点(无重复元素) ###
|
|
def binary_search_insertion_simple(nums, target)
|
|
# 初始化双闭区间 [0, n-1]
|
|
i, j = 0, nums.length - 1
|
|
|
|
while i <= j
|
|
# 计算中点索引 m
|
|
m = (i + j) / 2
|
|
|
|
if nums[m] < target
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
elsif nums[m] > target
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
else
|
|
return m # 找到 target ,返回插入点 m
|
|
end
|
|
end
|
|
|
|
i # 未找到 target ,返回插入点 i
|
|
end
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_search_insertion.zig"
|
|
[class]{}-[func]{binarySearchInsertionSimple}
|
|
```
|
|
|
|
??? pythontutor "Code Visualization"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_insertion_simple%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%EF%BC%88%E6%97%A0%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%EF%BC%89%22%22%22%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%20target%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20m%0A%20%20%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%20target%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20i%0A%20%20%20%20return%20i%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E6%97%A0%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%E7%9A%84%E6%95%B0%E7%BB%84%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20index%20%3D%20binary_search_insertion_simple%28nums,%20target%29%0A%20%20%20%20print%28f%22%E5%85%83%E7%B4%A0%20%7Btarget%7D%20%E7%9A%84%E6%8F%92%E5%85%A5%E7%82%B9%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%20%7Bindex%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_insertion_simple%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%EF%BC%88%E6%97%A0%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%EF%BC%89%22%22%22%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20m%20%20%23%20%E6%89%BE%E5%88%B0%20target%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20m%0A%20%20%20%20%23%20%E6%9C%AA%E6%89%BE%E5%88%B0%20target%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20i%0A%20%20%20%20return%20i%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E6%97%A0%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%E7%9A%84%E6%95%B0%E7%BB%84%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20index%20%3D%20binary_search_insertion_simple%28nums,%20target%29%0A%20%20%20%20print%28f%22%E5%85%83%E7%B4%A0%20%7Btarget%7D%20%E7%9A%84%E6%8F%92%E5%85%A5%E7%82%B9%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%20%7Bindex%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
|
|
|
## 10.2.2 Case with duplicate elements
|
|
|
|
!!! question
|
|
|
|
Based on the previous question, assume the array may contain duplicate elements, all else remains the same.
|
|
|
|
Suppose there are multiple `target`s in the array, ordinary binary search can only return the index of one of the `target`s, **and it cannot determine how many `target`s are to the left and right of that element**.
|
|
|
|
The task requires inserting the target element to the very left, **so we need to find the index of the leftmost `target` in the array**. Initially consider implementing this through the steps shown in the Figure 10-5 .
|
|
|
|
1. Perform a binary search, get an arbitrary index of `target`, denoted as $k$.
|
|
2. Start from index $k$, and perform a linear search to the left until the leftmost `target` is found and return.
|
|
|
|
![Linear search for the insertion point of duplicate elements](binary_search_insertion.assets/binary_search_insertion_naive.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 10-5 Linear search for the insertion point of duplicate elements </p>
|
|
|
|
Although this method is feasible, it includes linear search, so its time complexity is $O(n)$. This method is inefficient when the array contains many duplicate `target`s.
|
|
|
|
Now consider extending the binary search code. As shown in the Figure 10-6 , the overall process remains the same, each round first calculates the midpoint index $m$, then judges the size relationship between `target` and `nums[m]`, divided into the following cases.
|
|
|
|
- When `nums[m] < target` or `nums[m] > target`, it means `target` has not been found yet, thus use the normal binary search interval reduction operation, **thus making pointers $i$ and $j$ approach `target`**.
|
|
- When `nums[m] == target`, it indicates that the elements less than `target` are in the interval $[i, m - 1]$, therefore use $j = m - 1$ to narrow the interval, **thus making pointer $j$ approach elements less than `target`**.
|
|
|
|
After the loop, $i$ points to the leftmost `target`, and $j$ points to the first element less than `target`, **therefore index $i$ is the insertion point**.
|
|
|
|
=== "<1>"
|
|
![Steps for binary search insertion point of duplicate elements](binary_search_insertion.assets/binary_search_insertion_step1.png){ class="animation-figure" }
|
|
|
|
=== "<2>"
|
|
![binary_search_insertion_step2](binary_search_insertion.assets/binary_search_insertion_step2.png){ class="animation-figure" }
|
|
|
|
=== "<3>"
|
|
![binary_search_insertion_step3](binary_search_insertion.assets/binary_search_insertion_step3.png){ class="animation-figure" }
|
|
|
|
=== "<4>"
|
|
![binary_search_insertion_step4](binary_search_insertion.assets/binary_search_insertion_step4.png){ class="animation-figure" }
|
|
|
|
=== "<5>"
|
|
![binary_search_insertion_step5](binary_search_insertion.assets/binary_search_insertion_step5.png){ class="animation-figure" }
|
|
|
|
=== "<6>"
|
|
![binary_search_insertion_step6](binary_search_insertion.assets/binary_search_insertion_step6.png){ class="animation-figure" }
|
|
|
|
=== "<7>"
|
|
![binary_search_insertion_step7](binary_search_insertion.assets/binary_search_insertion_step7.png){ class="animation-figure" }
|
|
|
|
=== "<8>"
|
|
![binary_search_insertion_step8](binary_search_insertion.assets/binary_search_insertion_step8.png){ class="animation-figure" }
|
|
|
|
<p align="center"> Figure 10-6 Steps for binary search insertion point of duplicate elements </p>
|
|
|
|
Observe the code, the operations of the branch `nums[m] > target` and `nums[m] == target` are the same, so the two can be combined.
|
|
|
|
Even so, we can still keep the conditions expanded, as their logic is clearer and more readable.
|
|
|
|
=== "Python"
|
|
|
|
```python title="binary_search_insertion.py"
|
|
def binary_search_insertion(nums: list[int], target: int) -> int:
|
|
"""二分查找插入点(存在重复元素)"""
|
|
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
|
|
while i <= j:
|
|
m = (i + j) // 2 # 计算中点索引 m
|
|
if nums[m] < target:
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
elif nums[m] > target:
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
else:
|
|
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
|
|
# 返回插入点 i
|
|
return i
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="binary_search_insertion.cpp"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
int binarySearchInsertion(vector<int> &nums, int target) {
|
|
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="binary_search_insertion.java"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
int binarySearchInsertion(int[] nums, int target) {
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="binary_search_insertion.cs"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
int BinarySearchInsertion(int[] nums, int target) {
|
|
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="binary_search_insertion.go"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
func binarySearchInsertion(nums []int, target int) int {
|
|
// 初始化双闭区间 [0, n-1]
|
|
i, j := 0, len(nums)-1
|
|
for i <= j {
|
|
// 计算中点索引 m
|
|
m := i + (j-i)/2
|
|
if nums[m] < target {
|
|
// target 在区间 [m+1, j] 中
|
|
i = m + 1
|
|
} else if nums[m] > target {
|
|
// target 在区间 [i, m-1] 中
|
|
j = m - 1
|
|
} else {
|
|
// 首个小于 target 的元素在区间 [i, m-1] 中
|
|
j = m - 1
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="binary_search_insertion.swift"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
func binarySearchInsertion(nums: [Int], target: Int) -> Int {
|
|
// 初始化双闭区间 [0, n-1]
|
|
var i = nums.startIndex
|
|
var j = nums.endIndex - 1
|
|
while i <= j {
|
|
let m = i + (j - i) / 2 // 计算中点索引 m
|
|
if nums[m] < target {
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
} else if nums[m] > target {
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1 // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="binary_search_insertion.js"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
function binarySearchInsertion(nums, target) {
|
|
let i = 0,
|
|
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="binary_search_insertion.ts"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
function binarySearchInsertion(nums: Array<number>, target: number): number {
|
|
let i = 0,
|
|
j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
const m = Math.floor(i + (j - i) / 2); // 计算中点索引 m, 使用 Math.floor() 向下取整
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="binary_search_insertion.dart"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
int binarySearchInsertion(List<int> nums, int target) {
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) ~/ 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="binary_search_insertion.rs"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
pub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {
|
|
let (mut i, mut j) = (0, nums.len() as i32 - 1); // 初始化双闭区间 [0, n-1]
|
|
while i <= j {
|
|
let m = i + (j - i) / 2; // 计算中点索引 m
|
|
if nums[m as usize] < target {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if nums[m as usize] > target {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
i
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="binary_search_insertion.c"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
int binarySearchInsertion(int *nums, int numSize, int target) {
|
|
int i = 0, j = numSize - 1; // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="binary_search_insertion.kt"
|
|
/* 二分查找插入点(存在重复元素) */
|
|
fun binarySearchInsertion(nums: IntArray, target: Int): Int {
|
|
var i = 0
|
|
var j = nums.size - 1 // 初始化双闭区间 [0, n-1]
|
|
while (i <= j) {
|
|
val m = i + (j - i) / 2 // 计算中点索引 m
|
|
if (nums[m] < target) {
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
} else if (nums[m] > target) {
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
} else {
|
|
j = m - 1 // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
}
|
|
}
|
|
// 返回插入点 i
|
|
return i
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="binary_search_insertion.rb"
|
|
### 二分查找插入点(存在重复元素) ###
|
|
def binary_search_insertion(nums, target)
|
|
# 初始化双闭区间 [0, n-1]
|
|
i, j = 0, nums.length - 1
|
|
|
|
while i <= j
|
|
# 计算中点索引 m
|
|
m = (i + j) / 2
|
|
|
|
if nums[m] < target
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
elsif nums[m] > target
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
else
|
|
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
|
|
end
|
|
end
|
|
|
|
i # 返回插入点 i
|
|
end
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="binary_search_insertion.zig"
|
|
[class]{}-[func]{binarySearchInsertion}
|
|
```
|
|
|
|
??? pythontutor "Code Visualization"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_insertion%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%EF%BC%88%E5%AD%98%E5%9C%A8%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%EF%BC%89%22%22%22%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E9%A6%96%E4%B8%AA%E5%B0%8F%E4%BA%8E%20target%20%E7%9A%84%E5%85%83%E7%B4%A0%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%23%20%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20i%0A%20%20%20%20return%20i%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%8C%85%E5%90%AB%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%E7%9A%84%E6%95%B0%E7%BB%84%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%206,%206,%206,%206,%2010,%2012,%2015%5D%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20index%20%3D%20binary_search_insertion%28nums,%20target%29%0A%20%20%20%20print%28f%22%E5%85%83%E7%B4%A0%20%7Btarget%7D%20%E7%9A%84%E6%8F%92%E5%85%A5%E7%82%B9%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%20%7Bindex%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20binary_search_insertion%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%EF%BC%88%E5%AD%98%E5%9C%A8%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%EF%BC%89%22%22%22%0A%20%20%20%20i,%20j%20%3D%200,%20len%28nums%29%20-%201%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%20%5B0,%20n-1%5D%0A%20%20%20%20while%20i%20%3C%3D%20j%3A%0A%20%20%20%20%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%3D%20m%20%2B%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bm%2B1,%20j%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20target%20%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20%3D%20m%20-%201%20%20%23%20%E9%A6%96%E4%B8%AA%E5%B0%8F%E4%BA%8E%20target%20%E7%9A%84%E5%85%83%E7%B4%A0%E5%9C%A8%E5%8C%BA%E9%97%B4%20%5Bi,%20m-1%5D%20%E4%B8%AD%0A%20%20%20%20%23%20%E8%BF%94%E5%9B%9E%E6%8F%92%E5%85%A5%E7%82%B9%20i%0A%20%20%20%20return%20i%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%8C%85%E5%90%AB%E9%87%8D%E5%A4%8D%E5%85%83%E7%B4%A0%E7%9A%84%E6%95%B0%E7%BB%84%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%206,%206,%206,%206,%2010,%2012,%2015%5D%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%E6%8F%92%E5%85%A5%E7%82%B9%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20index%20%3D%20binary_search_insertion%28nums,%20target%29%0A%20%20%20%20print%28f%22%E5%85%83%E7%B4%A0%20%7Btarget%7D%20%E7%9A%84%E6%8F%92%E5%85%A5%E7%82%B9%E7%9A%84%E7%B4%A2%E5%BC%95%E4%B8%BA%20%7Bindex%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>
|
|
|
|
!!! tip
|
|
|
|
The code in this section uses "closed intervals". Readers interested can implement the "left-closed right-open" method themselves.
|
|
|
|
In summary, binary search is merely about setting search targets for pointers $i$ and $j$, which might be a specific element (like `target`) or a range of elements (like elements less than `target`).
|
|
|
|
In the continuous loop of binary search, pointers $i$ and $j$ gradually approach the predefined target. Ultimately, they either find the answer or stop after crossing the boundary.
|