You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_dynamic_programming/edit_distance_problem.md

502 lines
18 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
---
# 14.6.   编辑距离问题
编辑距离,也被称为 Levenshtein 距离,是两个字符串之间互相转换的最小修改次数,通常用于在信息检索和自然语言处理中度量两个序列的相似度。
!!! question
输入两个字符串 $s$ 和 $t$ ,返回将 $s$ 转换为 $t$ 所需的最少编辑步数。
你可以在一个字符串中进行三种编辑操作:插入一个字符、删除一个字符、替换字符为任意一个字符。
如下图所示,将 `kitten` 转换为 `sitting` 需要编辑 3 步,包括 2 次替换操作与 1 次添加操作;将 `hello` 转换为 `algo` 需要 3 步,包括 2 次替换操作和 1 次删除操作。
![编辑距离的示例数据](edit_distance_problem.assets/edit_distance_example.png)
<p align="center"> Fig. 编辑距离的示例数据 </p>
**编辑距离问题可以很自然地用决策树模型来解释**。字符串对应树节点,一轮决策(一次编辑操作)对应树的一条边。
如下图所示,在不限制操作的情况下,每个节点都可以派生出许多条边,每条边对应一种操作。实际上,从 `hello` 转换到 `algo` 有许多种可能的路径,下图展示的是最短路径。从决策树的角度看,本题目标是求解节点 `hello` 和节点 `algo` 之间的最短路径。
![基于决策树模型表示编辑距离问题](edit_distance_problem.assets/edit_distance_decision_tree.png)
<p align="center"> Fig. 基于决策树模型表示编辑距离问题 </p>
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
每一轮的决策是对字符串 $s$ 进行一次编辑操作。
我们希望在编辑操作的过程中,问题的规模逐渐缩小,这样才能构建子问题。设字符串 $s$ 和 $t$ 的长度分别为 $n$ 和 $m$ ,我们先考虑两字符串尾部的字符 $s[n-1]$ 和 $t[m-1]$
- 若 $s[n-1]$ 和 $t[m-1]$ 相同,我们可以直接跳过它们,接下来考虑 $s[n-2]$ 和 $t[m-2]$ ;
- 若 $s[n-1]$ 和 $t[m-1]$ 不同,我们需要对 $s$ 进行一次编辑(插入、删除、替换),使得两字符串尾部的字符相同,从而可以跳过它们,考虑规模更小的问题;
也就是说,我们在字符串 $s$ 中进行的每一轮决策(编辑操作),都会使得 $s$ 和 $t$ 中剩余的待匹配字符发生变化。因此,状态为当前在 $s$ , $t$ 中考虑的第 $i$ , $j$ 个字符,记为 $[i, j]$ 。
状态 $[i, j]$ 对应的子问题:**将 $s$ 的前 $i$ 个字符更改为 $t$ 的前 $j$ 个字符所需的最少编辑步数**。
至此得到一个尺寸为 $(i+1) \times (j+1)$ 的二维 $dp$ 表。
**第二步:找出最优子结构,进而推导出状态转移方程**
考虑子问题 $dp[i, j]$ ,其对应的两个字符串的尾部字符为 $s[i-1]$ 和 $t[j-1]$ ,可根据不同编辑操作分为三种情况:
1. 在 $s[i-1]$ 之后添加 $t[j-1]$ ,则剩余子问题 $dp[i, j-1]$
2. 删除 $s[i-1]$ ,则剩余子问题 $dp[i-1, j]$
3. 将 $s[i-1]$ 替换为 $t[j-1]$ ,则剩余子问题 $dp[i-1, j-1]$
![编辑距离的状态转移](edit_distance_problem.assets/edit_distance_state_transfer.png)
<p align="center"> Fig. 编辑距离的状态转移 </p>
根据以上分析,可得最优子结构:$dp[i, j]$ 的最少编辑步数等于 $dp[i, j-1]$ , $dp[i-1, j]$ , $dp[i-1, j-1]$ 三者中的最少编辑步数,再加上本次编辑的步数 $1$ 。对应的状态转移方程为:
$$
dp[i, j] = \min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1
$$
请注意,**当 $s[i-1]$ 和 $t[j-1]$ 相同时,无需编辑当前字符**,此时状态转移方程为:
$$
dp[i, j] = dp[i-1, j-1]
$$
**第三步:确定边界条件和状态转移顺序**
当两字符串都为空时,编辑步数为 $0$ ,即 $dp[0, 0] = 0$ 。当 $s$ 为空但 $t$ 不为空时,最少编辑步数等于 $t$ 的长度,即 $dp[0, j] = j$ 。当 $s$ 不为空但 $t$ 为空时,等于 $s$ 的长度,即 $dp[i, 0] = i$ 。
观察状态转移方程,解 $dp[i, j]$ 依赖左方、上方、左上方的解,因此通过两层循环正序遍历整个 $dp$ 表即可。
=== "Java"
```java title="edit_distance.java"
/* 编辑距离:动态规划 */
int editDistanceDP(String s, String t) {
int n = s.length(), m = t.length();
int[][] dp = new int[n + 1][m + 1];
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
```
=== "C++"
```cpp title="edit_distance.cpp"
/* 编辑距离:动态规划 */
int editDistanceDP(string s, string t) {
int n = s.length(), m = t.length();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
```
=== "Python"
```python title="edit_distance.py"
def edit_distance_dp(s: str, t: str) -> int:
"""编辑距离:动态规划"""
n, m = len(s), len(t)
dp = [[0] * (m + 1) for _ in range(n + 1)]
# 状态转移:首行首列
for i in range(1, n + 1):
dp[i][0] = i
for j in range(1, m + 1):
dp[0][j] = j
# 状态转移:其余行列
for i in range(1, n + 1):
for j in range(1, m + 1):
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1]
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[n][m]
```
=== "Go"
```go title="edit_distance.go"
[class]{}-[func]{editDistanceDP}
```
=== "JavaScript"
```javascript title="edit_distance.js"
[class]{}-[func]{editDistanceDP}
```
=== "TypeScript"
```typescript title="edit_distance.ts"
[class]{}-[func]{editDistanceDP}
```
=== "C"
```c title="edit_distance.c"
[class]{}-[func]{editDistanceDP}
```
=== "C#"
```csharp title="edit_distance.cs"
/* 编辑距离:动态规划 */
int editDistanceDP(string s, string t) {
int n = s.Length, m = t.Length;
int[,] dp = new int[n + 1, m + 1];
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i, 0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0, j] = j;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[i, j] = dp[i - 1, j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;
}
}
}
return dp[n, m];
}
```
=== "Swift"
```swift title="edit_distance.swift"
[class]{}-[func]{editDistanceDP}
```
=== "Zig"
```zig title="edit_distance.zig"
// 编辑距离:动态规划
fn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {
comptime var n = s.len;
comptime var m = t.len;
var dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);
// 状态转移:首行首列
for (1..n + 1) |i| {
dp[i][0] = @intCast(i);
}
for (1..m + 1) |j| {
dp[0][j] = @intCast(j);
}
// 状态转移:其余行列
for (1..n + 1) |i| {
for (1..m + 1) |j| {
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
```
=== "Dart"
```dart title="edit_distance.dart"
[class]{}-[func]{editDistanceDP}
```
如下图所示,编辑距离问题的状态转移过程与背包问题非常类似,都可以看作是填写一个二维网格的过程。
=== "<1>"
![编辑距离的动态规划过程](edit_distance_problem.assets/edit_distance_dp_step1.png)
=== "<2>"
![edit_distance_dp_step2](edit_distance_problem.assets/edit_distance_dp_step2.png)
=== "<3>"
![edit_distance_dp_step3](edit_distance_problem.assets/edit_distance_dp_step3.png)
=== "<4>"
![edit_distance_dp_step4](edit_distance_problem.assets/edit_distance_dp_step4.png)
=== "<5>"
![edit_distance_dp_step5](edit_distance_problem.assets/edit_distance_dp_step5.png)
=== "<6>"
![edit_distance_dp_step6](edit_distance_problem.assets/edit_distance_dp_step6.png)
=== "<7>"
![edit_distance_dp_step7](edit_distance_problem.assets/edit_distance_dp_step7.png)
=== "<8>"
![edit_distance_dp_step8](edit_distance_problem.assets/edit_distance_dp_step8.png)
=== "<9>"
![edit_distance_dp_step9](edit_distance_problem.assets/edit_distance_dp_step9.png)
=== "<10>"
![edit_distance_dp_step10](edit_distance_problem.assets/edit_distance_dp_step10.png)
=== "<11>"
![edit_distance_dp_step11](edit_distance_problem.assets/edit_distance_dp_step11.png)
=== "<12>"
![edit_distance_dp_step12](edit_distance_problem.assets/edit_distance_dp_step12.png)
=== "<13>"
![edit_distance_dp_step13](edit_distance_problem.assets/edit_distance_dp_step13.png)
=== "<14>"
![edit_distance_dp_step14](edit_distance_problem.assets/edit_distance_dp_step14.png)
=== "<15>"
![edit_distance_dp_step15](edit_distance_problem.assets/edit_distance_dp_step15.png)
下面考虑状态压缩,将 $dp$ 表的第一维删除。由于 $dp[i,j]$ 是由上方 $dp[i-1, j]$ 、左方 $dp[i, j-1]$ 、左上方状态 $dp[i-1, j-1]$ 转移而来,而正序遍历会丢失左上方 $dp[i-1, j-1]$ ,倒序遍历无法提前构建 $dp[i, j-1]$ ,因此两种遍历顺序都不可取。
为解决此问题,我们可以使用一个变量 `leftup` 来暂存左上方的解 $dp[i-1, j-1]$ ,这样便只用考虑左方和上方的解,与完全背包问题的情况相同,可使用正序遍历。
=== "Java"
```java title="edit_distance.java"
/* 编辑距离:状态压缩后的动态规划 */
int editDistanceDPComp(String s, String t) {
int n = s.length(), m = t.length();
int[] dp = new int[m + 1];
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// 状态转移:其余行
for (int i = 1; i <= n; i++) {
// 状态转移:首列
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = i;
// 状态转移:其余列
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
```
=== "C++"
```cpp title="edit_distance.cpp"
/* 编辑距离:状态压缩后的动态规划 */
int editDistanceDPComp(string s, string t) {
int n = s.length(), m = t.length();
vector<int> dp(m + 1, 0);
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// 状态转移:其余行
for (int i = 1; i <= n; i++) {
// 状态转移:首列
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = i;
// 状态转移:其余列
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
```
=== "Python"
```python title="edit_distance.py"
def edit_distance_dp_comp(s: str, t: str) -> int:
"""编辑距离:状态压缩后的动态规划"""
n, m = len(s), len(t)
dp = [0] * (m + 1)
# 状态转移:首行
for j in range(1, m + 1):
dp[j] = j
# 状态转移:其余行
for i in range(1, n + 1):
# 状态转移:首列
leftup = dp[0] # 暂存 dp[i-1, j-1]
dp[0] += 1
# 状态转移:其余列
for j in range(1, m + 1):
temp = dp[j]
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[j] = leftup
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
return dp[m]
```
=== "Go"
```go title="edit_distance.go"
[class]{}-[func]{editDistanceDPComp}
```
=== "JavaScript"
```javascript title="edit_distance.js"
[class]{}-[func]{editDistanceDPComp}
```
=== "TypeScript"
```typescript title="edit_distance.ts"
[class]{}-[func]{editDistanceDPComp}
```
=== "C"
```c title="edit_distance.c"
[class]{}-[func]{editDistanceDPComp}
```
=== "C#"
```csharp title="edit_distance.cs"
/* 编辑距离:状态压缩后的动态规划 */
int editDistanceDPComp(string s, string t) {
int n = s.Length, m = t.Length;
int[] dp = new int[m + 1];
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// 状态转移:其余行
for (int i = 1; i <= n; i++) {
// 状态转移:首列
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = i;
// 状态转移:其余列
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
```
=== "Swift"
```swift title="edit_distance.swift"
[class]{}-[func]{editDistanceDPComp}
```
=== "Zig"
```zig title="edit_distance.zig"
// 编辑距离:状态压缩后的动态规划
fn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {
comptime var n = s.len;
comptime var m = t.len;
var dp = [_]i32{0} ** (m + 1);
// 状态转移:首行
for (1..m + 1) |j| {
dp[j] = @intCast(j);
}
// 状态转移:其余行
for (1..n + 1) |i| {
// 状态转移:首列
var leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = @intCast(i);
// 状态转移:其余列
for (1..m + 1) |j| {
var temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
```
=== "Dart"
```dart title="edit_distance.dart"
[class]{}-[func]{editDistanceDPComp}
```