|
|
---
|
|
|
comments: true
|
|
|
---
|
|
|
|
|
|
# 9.2 图基础操作
|
|
|
|
|
|
图的基础操作可分为对“边”的操作和对“顶点”的操作。在“邻接矩阵”和“邻接表”两种表示方法下,实现方式有所不同。
|
|
|
|
|
|
## 9.2.1 基于邻接矩阵的实现
|
|
|
|
|
|
给定一个顶点数量为 $n$ 的无向图,则各种操作的实现方式如图 9-7 所示。
|
|
|
|
|
|
- **添加或删除边**:直接在邻接矩阵中修改指定的边即可,使用 $O(1)$ 时间。而由于是无向图,因此需要同时更新两个方向的边。
|
|
|
- **添加顶点**:在邻接矩阵的尾部添加一行一列,并全部填 $0$ 即可,使用 $O(n)$ 时间。
|
|
|
- **删除顶点**:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将 $(n-1)^2$ 个元素“向左上移动”,从而使用 $O(n^2)$ 时间。
|
|
|
- **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。
|
|
|
|
|
|
=== "初始化邻接矩阵"
|
|
|
![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_initialization.png)
|
|
|
|
|
|
=== "添加边"
|
|
|
![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_add_edge.png)
|
|
|
|
|
|
=== "删除边"
|
|
|
![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_remove_edge.png)
|
|
|
|
|
|
=== "添加顶点"
|
|
|
![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_add_vertex.png)
|
|
|
|
|
|
=== "删除顶点"
|
|
|
![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_remove_vertex.png)
|
|
|
|
|
|
<p align="center"> 图 9-7 邻接矩阵的初始化、增删边、增删顶点 </p>
|
|
|
|
|
|
以下是基于邻接矩阵表示图的实现代码。
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="graph_adjacency_matrix.py"
|
|
|
class GraphAdjMat:
|
|
|
"""基于邻接矩阵实现的无向图类"""
|
|
|
|
|
|
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
vertices: list[int] = []
|
|
|
# 邻接矩阵,行列索引对应“顶点索引”
|
|
|
adj_mat: list[list[int]] = []
|
|
|
|
|
|
def __init__(self, vertices: list[int], edges: list[list[int]]):
|
|
|
"""构造方法"""
|
|
|
self.vertices: list[int] = []
|
|
|
self.adj_mat: list[list[int]] = []
|
|
|
# 添加顶点
|
|
|
for val in vertices:
|
|
|
self.add_vertex(val)
|
|
|
# 添加边
|
|
|
# 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for e in edges:
|
|
|
self.add_edge(e[0], e[1])
|
|
|
|
|
|
def size(self) -> int:
|
|
|
"""获取顶点数量"""
|
|
|
return len(self.vertices)
|
|
|
|
|
|
def add_vertex(self, val: int):
|
|
|
"""添加顶点"""
|
|
|
n = self.size()
|
|
|
# 向顶点列表中添加新顶点的值
|
|
|
self.vertices.append(val)
|
|
|
# 在邻接矩阵中添加一行
|
|
|
new_row = [0] * n
|
|
|
self.adj_mat.append(new_row)
|
|
|
# 在邻接矩阵中添加一列
|
|
|
for row in self.adj_mat:
|
|
|
row.append(0)
|
|
|
|
|
|
def remove_vertex(self, index: int):
|
|
|
"""删除顶点"""
|
|
|
if index >= self.size():
|
|
|
raise IndexError()
|
|
|
# 在顶点列表中移除索引 index 的顶点
|
|
|
self.vertices.pop(index)
|
|
|
# 在邻接矩阵中删除索引 index 的行
|
|
|
self.adj_mat.pop(index)
|
|
|
# 在邻接矩阵中删除索引 index 的列
|
|
|
for row in self.adj_mat:
|
|
|
row.pop(index)
|
|
|
|
|
|
def add_edge(self, i: int, j: int):
|
|
|
"""添加边"""
|
|
|
# 参数 i, j 对应 vertices 元素索引
|
|
|
# 索引越界与相等处理
|
|
|
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
|
|
|
raise IndexError()
|
|
|
# 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
self.adj_mat[i][j] = 1
|
|
|
self.adj_mat[j][i] = 1
|
|
|
|
|
|
def remove_edge(self, i: int, j: int):
|
|
|
"""删除边"""
|
|
|
# 参数 i, j 对应 vertices 元素索引
|
|
|
# 索引越界与相等处理
|
|
|
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
|
|
|
raise IndexError()
|
|
|
self.adj_mat[i][j] = 0
|
|
|
self.adj_mat[j][i] = 0
|
|
|
|
|
|
def print(self):
|
|
|
"""打印邻接矩阵"""
|
|
|
print("顶点列表 =", self.vertices)
|
|
|
print("邻接矩阵 =")
|
|
|
print_matrix(self.adj_mat)
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="graph_adjacency_matrix.cpp"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
vector<int> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
vector<vector<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
public:
|
|
|
/* 构造方法 */
|
|
|
GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {
|
|
|
// 添加顶点
|
|
|
for (int val : vertices) {
|
|
|
addVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for (const vector<int> &edge : edges) {
|
|
|
addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
int size() const {
|
|
|
return vertices.size();
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(int val) {
|
|
|
int n = size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
vertices.push_back(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
adjMat.emplace_back(vector<int>(n, 0));
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for (vector<int> &row : adjMat) {
|
|
|
row.push_back(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(int index) {
|
|
|
if (index >= size()) {
|
|
|
throw out_of_range("顶点不存在");
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
vertices.erase(vertices.begin() + index);
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
adjMat.erase(adjMat.begin() + index);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for (vector<int> &row : adjMat) {
|
|
|
row.erase(row.begin() + index);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void addEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
|
|
|
throw out_of_range("顶点不存在");
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
adjMat[i][j] = 1;
|
|
|
adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void removeEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
|
|
|
throw out_of_range("顶点不存在");
|
|
|
}
|
|
|
adjMat[i][j] = 0;
|
|
|
adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
void print() {
|
|
|
cout << "顶点列表 = ";
|
|
|
printVector(vertices);
|
|
|
cout << "邻接矩阵 =" << endl;
|
|
|
printVectorMatrix(adjMat);
|
|
|
}
|
|
|
};
|
|
|
```
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="graph_adjacency_matrix.java"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
List<Integer> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
List<List<Integer>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造方法 */
|
|
|
public GraphAdjMat(int[] vertices, int[][] edges) {
|
|
|
this.vertices = new ArrayList<>();
|
|
|
this.adjMat = new ArrayList<>();
|
|
|
// 添加顶点
|
|
|
for (int val : vertices) {
|
|
|
addVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for (int[] e : edges) {
|
|
|
addEdge(e[0], e[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
public int size() {
|
|
|
return vertices.size();
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
public void addVertex(int val) {
|
|
|
int n = size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
vertices.add(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
List<Integer> newRow = new ArrayList<>(n);
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
newRow.add(0);
|
|
|
}
|
|
|
adjMat.add(newRow);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for (List<Integer> row : adjMat) {
|
|
|
row.add(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
public void removeVertex(int index) {
|
|
|
if (index >= size())
|
|
|
throw new IndexOutOfBoundsException();
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
vertices.remove(index);
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
adjMat.remove(index);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for (List<Integer> row : adjMat) {
|
|
|
row.remove(index);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
public void addEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
|
|
|
throw new IndexOutOfBoundsException();
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
adjMat.get(i).set(j, 1);
|
|
|
adjMat.get(j).set(i, 1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
public void removeEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
|
|
|
throw new IndexOutOfBoundsException();
|
|
|
adjMat.get(i).set(j, 0);
|
|
|
adjMat.get(j).set(i, 0);
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
public void print() {
|
|
|
System.out.print("顶点列表 = ");
|
|
|
System.out.println(vertices);
|
|
|
System.out.println("邻接矩阵 =");
|
|
|
PrintUtil.printMatrix(adjMat);
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="graph_adjacency_matrix.cs"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
readonly List<int> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
readonly List<List<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造函数 */
|
|
|
public GraphAdjMat(int[] vertices, int[][] edges) {
|
|
|
this.vertices = new List<int>();
|
|
|
this.adjMat = new List<List<int>>();
|
|
|
// 添加顶点
|
|
|
foreach (int val in vertices) {
|
|
|
AddVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
foreach (int[] e in edges) {
|
|
|
AddEdge(e[0], e[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
public int Size() {
|
|
|
return vertices.Count;
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
public void AddVertex(int val) {
|
|
|
int n = Size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
vertices.Add(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
List<int> newRow = new(n);
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
newRow.Add(0);
|
|
|
}
|
|
|
adjMat.Add(newRow);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
foreach (List<int> row in adjMat) {
|
|
|
row.Add(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
public void RemoveVertex(int index) {
|
|
|
if (index >= Size())
|
|
|
throw new IndexOutOfRangeException();
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
vertices.RemoveAt(index);
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
adjMat.RemoveAt(index);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
foreach (List<int> row in adjMat) {
|
|
|
row.RemoveAt(index);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
public void AddEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)
|
|
|
throw new IndexOutOfRangeException();
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
adjMat[i][j] = 1;
|
|
|
adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
public void RemoveEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)
|
|
|
throw new IndexOutOfRangeException();
|
|
|
adjMat[i][j] = 0;
|
|
|
adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
public void Print() {
|
|
|
Console.Write("顶点列表 = ");
|
|
|
PrintUtil.PrintList(vertices);
|
|
|
Console.WriteLine("邻接矩阵 =");
|
|
|
PrintUtil.PrintMatrix(adjMat);
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="graph_adjacency_matrix.go"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
type graphAdjMat struct {
|
|
|
// 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
vertices []int
|
|
|
// 邻接矩阵,行列索引对应“顶点索引”
|
|
|
adjMat [][]int
|
|
|
}
|
|
|
|
|
|
/* 构造函数 */
|
|
|
func newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat {
|
|
|
// 添加顶点
|
|
|
n := len(vertices)
|
|
|
adjMat := make([][]int, n)
|
|
|
for i := range adjMat {
|
|
|
adjMat[i] = make([]int, n)
|
|
|
}
|
|
|
// 初始化图
|
|
|
g := &graphAdjMat{
|
|
|
vertices: vertices,
|
|
|
adjMat: adjMat,
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for i := range edges {
|
|
|
g.addEdge(edges[i][0], edges[i][1])
|
|
|
}
|
|
|
return g
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
func (g *graphAdjMat) size() int {
|
|
|
return len(g.vertices)
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
func (g *graphAdjMat) addVertex(val int) {
|
|
|
n := g.size()
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
g.vertices = append(g.vertices, val)
|
|
|
// 在邻接矩阵中添加一行
|
|
|
newRow := make([]int, n)
|
|
|
g.adjMat = append(g.adjMat, newRow)
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for i := range g.adjMat {
|
|
|
g.adjMat[i] = append(g.adjMat[i], 0)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
func (g *graphAdjMat) removeVertex(index int) {
|
|
|
if index >= g.size() {
|
|
|
return
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
g.vertices = append(g.vertices[:index], g.vertices[index+1:]...)
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
g.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...)
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for i := range g.adjMat {
|
|
|
g.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
func (g *graphAdjMat) addEdge(i, j int) {
|
|
|
// 索引越界与相等处理
|
|
|
if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {
|
|
|
fmt.Errorf("%s", "Index Out Of Bounds Exception")
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
g.adjMat[i][j] = 1
|
|
|
g.adjMat[j][i] = 1
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
func (g *graphAdjMat) removeEdge(i, j int) {
|
|
|
// 索引越界与相等处理
|
|
|
if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {
|
|
|
fmt.Errorf("%s", "Index Out Of Bounds Exception")
|
|
|
}
|
|
|
g.adjMat[i][j] = 0
|
|
|
g.adjMat[j][i] = 0
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
func (g *graphAdjMat) print() {
|
|
|
fmt.Printf("\t顶点列表 = %v\n", g.vertices)
|
|
|
fmt.Printf("\t邻接矩阵 = \n")
|
|
|
for i := range g.adjMat {
|
|
|
fmt.Printf("\t\t\t%v\n", g.adjMat[i])
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="graph_adjacency_matrix.swift"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
private var vertices: [Int] // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
private var adjMat: [[Int]] // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造方法 */
|
|
|
init(vertices: [Int], edges: [[Int]]) {
|
|
|
self.vertices = []
|
|
|
adjMat = []
|
|
|
// 添加顶点
|
|
|
for val in vertices {
|
|
|
addVertex(val: val)
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for e in edges {
|
|
|
addEdge(i: e[0], j: e[1])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
func size() -> Int {
|
|
|
vertices.count
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
func addVertex(val: Int) {
|
|
|
let n = size()
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
vertices.append(val)
|
|
|
// 在邻接矩阵中添加一行
|
|
|
let newRow = Array(repeating: 0, count: n)
|
|
|
adjMat.append(newRow)
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for i in adjMat.indices {
|
|
|
adjMat[i].append(0)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
func removeVertex(index: Int) {
|
|
|
if index >= size() {
|
|
|
fatalError("越界")
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
vertices.remove(at: index)
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
adjMat.remove(at: index)
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for i in adjMat.indices {
|
|
|
adjMat[i].remove(at: index)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
func addEdge(i: Int, j: Int) {
|
|
|
// 索引越界与相等处理
|
|
|
if i < 0 || j < 0 || i >= size() || j >= size() || i == j {
|
|
|
fatalError("越界")
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
adjMat[i][j] = 1
|
|
|
adjMat[j][i] = 1
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
func removeEdge(i: Int, j: Int) {
|
|
|
// 索引越界与相等处理
|
|
|
if i < 0 || j < 0 || i >= size() || j >= size() || i == j {
|
|
|
fatalError("越界")
|
|
|
}
|
|
|
adjMat[i][j] = 0
|
|
|
adjMat[j][i] = 0
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
func print() {
|
|
|
Swift.print("顶点列表 = ", terminator: "")
|
|
|
Swift.print(vertices)
|
|
|
Swift.print("邻接矩阵 =")
|
|
|
PrintUtil.printMatrix(matrix: adjMat)
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
```javascript title="graph_adjacency_matrix.js"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造函数 */
|
|
|
constructor(vertices, edges) {
|
|
|
this.vertices = [];
|
|
|
this.adjMat = [];
|
|
|
// 添加顶点
|
|
|
for (const val of vertices) {
|
|
|
this.addVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for (const e of edges) {
|
|
|
this.addEdge(e[0], e[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
size() {
|
|
|
return this.vertices.length;
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
addVertex(val) {
|
|
|
const n = this.size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
this.vertices.push(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
const newRow = [];
|
|
|
for (let j = 0; j < n; j++) {
|
|
|
newRow.push(0);
|
|
|
}
|
|
|
this.adjMat.push(newRow);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for (const row of this.adjMat) {
|
|
|
row.push(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
removeVertex(index) {
|
|
|
if (index >= this.size()) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
this.vertices.splice(index, 1);
|
|
|
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
this.adjMat.splice(index, 1);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for (const row of this.adjMat) {
|
|
|
row.splice(index, 1);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
addEdge(i, j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) === (j, i)
|
|
|
this.adjMat[i][j] = 1;
|
|
|
this.adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
removeEdge(i, j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
this.adjMat[i][j] = 0;
|
|
|
this.adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
print() {
|
|
|
console.log('顶点列表 = ', this.vertices);
|
|
|
console.log('邻接矩阵 =', this.adjMat);
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
```typescript title="graph_adjacency_matrix.ts"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
vertices: number[]; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
adjMat: number[][]; // 邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造函数 */
|
|
|
constructor(vertices: number[], edges: number[][]) {
|
|
|
this.vertices = [];
|
|
|
this.adjMat = [];
|
|
|
// 添加顶点
|
|
|
for (const val of vertices) {
|
|
|
this.addVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for (const e of edges) {
|
|
|
this.addEdge(e[0], e[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
size(): number {
|
|
|
return this.vertices.length;
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
addVertex(val: number): void {
|
|
|
const n: number = this.size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
this.vertices.push(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
const newRow: number[] = [];
|
|
|
for (let j: number = 0; j < n; j++) {
|
|
|
newRow.push(0);
|
|
|
}
|
|
|
this.adjMat.push(newRow);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for (const row of this.adjMat) {
|
|
|
row.push(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
removeVertex(index: number): void {
|
|
|
if (index >= this.size()) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
this.vertices.splice(index, 1);
|
|
|
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
this.adjMat.splice(index, 1);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for (const row of this.adjMat) {
|
|
|
row.splice(index, 1);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
addEdge(i: number, j: number): void {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) === (j, i)
|
|
|
this.adjMat[i][j] = 1;
|
|
|
this.adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
removeEdge(i: number, j: number): void {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {
|
|
|
throw new RangeError('Index Out Of Bounds Exception');
|
|
|
}
|
|
|
this.adjMat[i][j] = 0;
|
|
|
this.adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
print(): void {
|
|
|
console.log('顶点列表 = ', this.vertices);
|
|
|
console.log('邻接矩阵 =', this.adjMat);
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="graph_adjacency_matrix.dart"
|
|
|
/* 基于邻接矩阵实现的无向图类 */
|
|
|
class GraphAdjMat {
|
|
|
List<int> vertices = []; // 顶点元素,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
List<List<int>> adjMat = []; //邻接矩阵,行列索引对应“顶点索引”
|
|
|
|
|
|
/* 构造方法 */
|
|
|
GraphAdjMat(List<int> vertices, List<List<int>> edges) {
|
|
|
this.vertices = [];
|
|
|
this.adjMat = [];
|
|
|
// 添加顶点
|
|
|
for (int val in vertices) {
|
|
|
addVertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for (List<int> e in edges) {
|
|
|
addEdge(e[0], e[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
int size() {
|
|
|
return vertices.length;
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(int val) {
|
|
|
int n = size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
vertices.add(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
List<int> newRow = List.filled(n, 0, growable: true);
|
|
|
adjMat.add(newRow);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for (List<int> row in adjMat) {
|
|
|
row.add(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(int index) {
|
|
|
if (index >= size()) {
|
|
|
throw IndexError;
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
vertices.removeAt(index);
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
adjMat.removeAt(index);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for (List<int> row in adjMat) {
|
|
|
row.removeAt(index);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void addEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
|
|
|
throw IndexError;
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
adjMat[i][j] = 1;
|
|
|
adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void removeEdge(int i, int j) {
|
|
|
// 索引越界与相等处理
|
|
|
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
|
|
|
throw IndexError;
|
|
|
}
|
|
|
adjMat[i][j] = 0;
|
|
|
adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
void printAdjMat() {
|
|
|
print("顶点列表 = $vertices");
|
|
|
print("邻接矩阵 = ");
|
|
|
printMatrix(adjMat);
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
```rust title="graph_adjacency_matrix.rs"
|
|
|
/* 基于邻接矩阵实现的无向图类型 */
|
|
|
pub struct GraphAdjMat {
|
|
|
// 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
|
|
pub vertices: Vec<i32>,
|
|
|
// 邻接矩阵,行列索引对应“顶点索引”
|
|
|
pub adj_mat: Vec<Vec<i32>>,
|
|
|
}
|
|
|
|
|
|
impl GraphAdjMat {
|
|
|
/* 构造方法 */
|
|
|
pub fn new(vertices: Vec<i32>, edges: Vec<[usize; 2]>) -> Self {
|
|
|
let mut graph = GraphAdjMat {
|
|
|
vertices: vec![],
|
|
|
adj_mat: vec![],
|
|
|
};
|
|
|
// 添加顶点
|
|
|
for val in vertices {
|
|
|
graph.add_vertex(val);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
|
|
for edge in edges {
|
|
|
graph.add_edge(edge[0], edge[1])
|
|
|
}
|
|
|
|
|
|
graph
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
pub fn size(&self) -> usize {
|
|
|
self.vertices.len()
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
pub fn add_vertex(&mut self, val: i32) {
|
|
|
let n = self.size();
|
|
|
// 向顶点列表中添加新顶点的值
|
|
|
self.vertices.push(val);
|
|
|
// 在邻接矩阵中添加一行
|
|
|
self.adj_mat.push(vec![0; n]);
|
|
|
// 在邻接矩阵中添加一列
|
|
|
for row in &mut self.adj_mat {
|
|
|
row.push(0);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
pub fn remove_vertex(&mut self, index: usize) {
|
|
|
if index >= self.size() {
|
|
|
panic!("index error")
|
|
|
}
|
|
|
// 在顶点列表中移除索引 index 的顶点
|
|
|
self.vertices.remove(index);
|
|
|
// 在邻接矩阵中删除索引 index 的行
|
|
|
self.adj_mat.remove(index);
|
|
|
// 在邻接矩阵中删除索引 index 的列
|
|
|
for row in &mut self.adj_mat {
|
|
|
row.remove(index);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
pub fn add_edge(&mut self, i: usize, j: usize) {
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
// 索引越界与相等处理
|
|
|
if i >= self.size() || j >= self.size() || i == j {
|
|
|
panic!("index error")
|
|
|
}
|
|
|
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
|
|
self.adj_mat[i][j] = 1;
|
|
|
self.adj_mat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
pub fn remove_edge(&mut self, i: usize, j: usize) {
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
// 索引越界与相等处理
|
|
|
if i >= self.size() || j >= self.size() || i == j {
|
|
|
panic!("index error")
|
|
|
}
|
|
|
self.adj_mat[i][j] = 0;
|
|
|
self.adj_mat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 打印邻接矩阵 */
|
|
|
pub fn print(&self) {
|
|
|
println!("顶点列表 = {:?}", self.vertices);
|
|
|
println!("邻接矩阵 =");
|
|
|
println!("[");
|
|
|
for row in &self.adj_mat {
|
|
|
println!(" {:?},", row);
|
|
|
}
|
|
|
println!("]")
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="graph_adjacency_matrix.c"
|
|
|
/* 基于邻接矩阵实现的无向图类结构 */
|
|
|
struct graphAdjMat {
|
|
|
int *vertices; // 顶点列表
|
|
|
unsigned int **adjMat; // 邻接矩阵,元素代表“边”,索引代表“顶点索引”
|
|
|
unsigned int size; // 顶点数量
|
|
|
unsigned int capacity; // 图容量
|
|
|
};
|
|
|
|
|
|
typedef struct graphAdjMat graphAdjMat;
|
|
|
|
|
|
/* 添加边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void addEdge(graphAdjMat *t, int i, int j) {
|
|
|
// 越界检查
|
|
|
if (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
exit(1);
|
|
|
}
|
|
|
// 添加边
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
t->adjMat[i][j] = 1;
|
|
|
t->adjMat[j][i] = 1;
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
void removeEdge(graphAdjMat *t, int i, int j) {
|
|
|
// 越界检查
|
|
|
if (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
exit(1);
|
|
|
}
|
|
|
// 删除边
|
|
|
// 参数 i, j 对应 vertices 元素索引
|
|
|
t->adjMat[i][j] = 0;
|
|
|
t->adjMat[j][i] = 0;
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(graphAdjMat *t, int val) {
|
|
|
// 如果实际使用不大于预设空间,则直接初始化新空间
|
|
|
if (t->size < t->capacity) {
|
|
|
t->vertices[t->size] = val; // 初始化新顶点值
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
t->adjMat[i][t->size] = 0; // 邻接矩新列阵置0
|
|
|
}
|
|
|
memset(t->adjMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // 将新增行置 0
|
|
|
t->size++;
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
// 扩容,申请新的顶点数组
|
|
|
int *temp = (int *)malloc(sizeof(int) * (t->size * 2));
|
|
|
memcpy(temp, t->vertices, sizeof(int) * t->size);
|
|
|
temp[t->size] = val;
|
|
|
|
|
|
// 释放原数组
|
|
|
free(t->vertices);
|
|
|
t->vertices = temp;
|
|
|
|
|
|
// 扩容,申请新的二维数组
|
|
|
unsigned int **tempMat = (unsigned int **)malloc(sizeof(unsigned int *) * t->size * 2);
|
|
|
unsigned int *tempMatLine = (unsigned int *)malloc(sizeof(unsigned int) * (t->size * 2) * (t->size * 2));
|
|
|
memset(tempMatLine, 0, sizeof(unsigned int) * (t->size * 2) * (t->size * 2));
|
|
|
for (int k = 0; k < t->size * 2; k++) {
|
|
|
tempMat[k] = tempMatLine + k * (t->size * 2);
|
|
|
}
|
|
|
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
memcpy(tempMat[i], t->adjMat[i], sizeof(unsigned int) * t->size); // 原数据复制到新数组
|
|
|
}
|
|
|
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
tempMat[i][t->size] = 0; // 将新增列置 0
|
|
|
}
|
|
|
memset(tempMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // 将新增行置 0
|
|
|
|
|
|
// 释放原数组
|
|
|
free(t->adjMat[0]);
|
|
|
free(t->adjMat);
|
|
|
|
|
|
// 扩容后,指向新地址
|
|
|
t->adjMat = tempMat; // 指向新的邻接矩阵地址
|
|
|
t->capacity = t->size * 2;
|
|
|
t->size++;
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(graphAdjMat *t, unsigned int index) {
|
|
|
// 越界检查
|
|
|
if (index < 0 || index >= t->size) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
exit(1);
|
|
|
}
|
|
|
for (int i = index; i < t->size - 1; i++) {
|
|
|
t->vertices[i] = t->vertices[i + 1]; // 清除删除的顶点,并将其后所有顶点前移
|
|
|
}
|
|
|
t->vertices[t->size - 1] = 0; // 将被前移的最后一个顶点置 0
|
|
|
|
|
|
// 清除邻接矩阵中删除的列
|
|
|
for (int i = 0; i < t->size - 1; i++) {
|
|
|
if (i < index) {
|
|
|
for (int j = index; j < t->size - 1; j++) {
|
|
|
t->adjMat[i][j] = t->adjMat[i][j + 1]; // 被删除列后的所有列前移
|
|
|
}
|
|
|
} else {
|
|
|
memcpy(t->adjMat[i], t->adjMat[i + 1], sizeof(unsigned int) * t->size); // 被删除行的下方所有行上移
|
|
|
for (int j = index; j < t->size; j++) {
|
|
|
t->adjMat[i][j] = t->adjMat[i][j + 1]; // 被删除列后的所有列前移
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
t->size--;
|
|
|
}
|
|
|
|
|
|
/* 打印顶点与邻接矩阵 */
|
|
|
void printGraph(graphAdjMat *t) {
|
|
|
if (t->size == 0) {
|
|
|
printf("graph is empty\n");
|
|
|
return;
|
|
|
}
|
|
|
printf("顶点列表 = [");
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
if (i != t->size - 1) {
|
|
|
printf("%d, ", t->vertices[i]);
|
|
|
} else {
|
|
|
printf("%d", t->vertices[i]);
|
|
|
}
|
|
|
}
|
|
|
printf("]\n");
|
|
|
printf("邻接矩阵 =\n[\n");
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
printf(" [");
|
|
|
for (int j = 0; j < t->size; j++) {
|
|
|
if (j != t->size - 1) {
|
|
|
printf("%u, ", t->adjMat[i][j]);
|
|
|
} else {
|
|
|
printf("%u", t->adjMat[i][j]);
|
|
|
}
|
|
|
}
|
|
|
printf("],\n");
|
|
|
}
|
|
|
printf("]\n");
|
|
|
}
|
|
|
|
|
|
/* 构造函数 */
|
|
|
graphAdjMat *newGraphAjdMat(unsigned int numberVertices, int *vertices, unsigned int **adjMat) {
|
|
|
// 申请内存
|
|
|
graphAdjMat *newGraph = (graphAdjMat *)malloc(sizeof(graphAdjMat)); // 为图分配内存
|
|
|
newGraph->vertices = (int *)malloc(sizeof(int) * numberVertices * 2); // 为顶点列表分配内存
|
|
|
newGraph->adjMat = (unsigned int **)malloc(sizeof(unsigned int *) * numberVertices * 2); // 为邻接矩阵分配二维内存
|
|
|
unsigned int *temp = (unsigned int *)malloc(sizeof(unsigned int) * numberVertices * 2 * numberVertices * 2); // 为邻接矩阵分配一维内存
|
|
|
newGraph->size = numberVertices; // 初始化顶点数量
|
|
|
newGraph->capacity = numberVertices * 2; // 初始化图容量
|
|
|
|
|
|
// 配置二维数组
|
|
|
for (int i = 0; i < numberVertices * 2; i++) {
|
|
|
newGraph->adjMat[i] = temp + i * numberVertices * 2; // 将二维指针指向一维数组
|
|
|
}
|
|
|
|
|
|
// 赋值
|
|
|
memcpy(newGraph->vertices, vertices, sizeof(int) * numberVertices);
|
|
|
for (int i = 0; i < numberVertices; i++) {
|
|
|
memcpy(newGraph->adjMat[i], adjMat[i], sizeof(unsigned int) * numberVertices); // 将传入的邻接矩阵赋值给结构体内邻接矩阵
|
|
|
}
|
|
|
|
|
|
// 返回结构体指针
|
|
|
return newGraph;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="graph_adjacency_matrix.zig"
|
|
|
[class]{GraphAdjMat}-[func]{}
|
|
|
```
|
|
|
|
|
|
## 9.2.2 基于邻接表的实现
|
|
|
|
|
|
设无向图的顶点总数为 $n$、边总数为 $m$ ,则可根据图 9-8 所示的方法实现各种操作。
|
|
|
|
|
|
- **添加边**:在顶点对应链表的末尾添加边即可,使用 $O(1)$ 时间。因为是无向图,所以需要同时添加两个方向的边。
|
|
|
- **删除边**:在顶点对应链表中查找并删除指定边,使用 $O(m)$ 时间。在无向图中,需要同时删除两个方向的边。
|
|
|
- **添加顶点**:在邻接表中添加一个链表,并将新增顶点作为链表头节点,使用 $O(1)$ 时间。
|
|
|
- **删除顶点**:需遍历整个邻接表,删除包含指定顶点的所有边,使用 $O(n + m)$ 时间。
|
|
|
- **初始化**:在邻接表中创建 $n$ 个顶点和 $2m$ 条边,使用 $O(n + m)$ 时间。
|
|
|
|
|
|
=== "初始化邻接表"
|
|
|
![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_initialization.png)
|
|
|
|
|
|
=== "添加边"
|
|
|
![adjacency_list_add_edge](graph_operations.assets/adjacency_list_add_edge.png)
|
|
|
|
|
|
=== "删除边"
|
|
|
![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_remove_edge.png)
|
|
|
|
|
|
=== "添加顶点"
|
|
|
![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_add_vertex.png)
|
|
|
|
|
|
=== "删除顶点"
|
|
|
![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_remove_vertex.png)
|
|
|
|
|
|
<p align="center"> 图 9-8 邻接表的初始化、增删边、增删顶点 </p>
|
|
|
|
|
|
以下是基于邻接表实现图的代码示例。细心的同学可能注意到,**我们在邻接表中使用 `Vertex` 节点类来表示顶点**,而这样做是有原因的。
|
|
|
|
|
|
1. 如果我们选择通过顶点值来区分不同顶点,那么值重复的顶点将无法被区分。
|
|
|
2. 如果类似邻接矩阵那样,使用顶点列表索引来区分不同顶点。那么,假设我们想要删除索引为 $i$ 的顶点,则需要遍历整个邻接表,将其中 $> i$ 的索引全部减 $1$ ,这样操作效率较低。
|
|
|
3. 因此我们考虑引入顶点类 `Vertex` ,使得每个顶点都是唯一的对象,此时删除顶点时就无须改动其余顶点了。
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="graph_adjacency_list.py"
|
|
|
class GraphAdjList:
|
|
|
"""基于邻接表实现的无向图类"""
|
|
|
|
|
|
def __init__(self, edges: list[list[Vertex]]):
|
|
|
"""构造方法"""
|
|
|
# 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
self.adj_list = dict[Vertex, list[Vertex]]()
|
|
|
# 添加所有顶点和边
|
|
|
for edge in edges:
|
|
|
self.add_vertex(edge[0])
|
|
|
self.add_vertex(edge[1])
|
|
|
self.add_edge(edge[0], edge[1])
|
|
|
|
|
|
def size(self) -> int:
|
|
|
"""获取顶点数量"""
|
|
|
return len(self.adj_list)
|
|
|
|
|
|
def add_edge(self, vet1: Vertex, vet2: Vertex):
|
|
|
"""添加边"""
|
|
|
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
|
|
|
raise ValueError()
|
|
|
# 添加边 vet1 - vet2
|
|
|
self.adj_list[vet1].append(vet2)
|
|
|
self.adj_list[vet2].append(vet1)
|
|
|
|
|
|
def remove_edge(self, vet1: Vertex, vet2: Vertex):
|
|
|
"""删除边"""
|
|
|
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
|
|
|
raise ValueError()
|
|
|
# 删除边 vet1 - vet2
|
|
|
self.adj_list[vet1].remove(vet2)
|
|
|
self.adj_list[vet2].remove(vet1)
|
|
|
|
|
|
def add_vertex(self, vet: Vertex):
|
|
|
"""添加顶点"""
|
|
|
if vet in self.adj_list:
|
|
|
return
|
|
|
# 在邻接表中添加一个新链表
|
|
|
self.adj_list[vet] = []
|
|
|
|
|
|
def remove_vertex(self, vet: Vertex):
|
|
|
"""删除顶点"""
|
|
|
if vet not in self.adj_list:
|
|
|
raise ValueError()
|
|
|
# 在邻接表中删除顶点 vet 对应的链表
|
|
|
self.adj_list.pop(vet)
|
|
|
# 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for vertex in self.adj_list:
|
|
|
if vet in self.adj_list[vertex]:
|
|
|
self.adj_list[vertex].remove(vet)
|
|
|
|
|
|
def print(self):
|
|
|
"""打印邻接表"""
|
|
|
print("邻接表 =")
|
|
|
for vertex in self.adj_list:
|
|
|
tmp = [v.val for v in self.adj_list[vertex]]
|
|
|
print(f"{vertex.val}: {tmp},")
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="graph_adjacency_list.cpp"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
public:
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
unordered_map<Vertex *, vector<Vertex *>> adjList;
|
|
|
|
|
|
/* 在 vector 中删除指定节点 */
|
|
|
void remove(vector<Vertex *> &vec, Vertex *vet) {
|
|
|
for (int i = 0; i < vec.size(); i++) {
|
|
|
if (vec[i] == vet) {
|
|
|
vec.erase(vec.begin() + i);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 构造方法 */
|
|
|
GraphAdjList(const vector<vector<Vertex *>> &edges) {
|
|
|
// 添加所有顶点和边
|
|
|
for (const vector<Vertex *> &edge : edges) {
|
|
|
addVertex(edge[0]);
|
|
|
addVertex(edge[1]);
|
|
|
addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
int size() {
|
|
|
return adjList.size();
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
void addEdge(Vertex *vet1, Vertex *vet2) {
|
|
|
if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
|
|
|
throw invalid_argument("不存在顶点");
|
|
|
// 添加边 vet1 - vet2
|
|
|
adjList[vet1].push_back(vet2);
|
|
|
adjList[vet2].push_back(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
void removeEdge(Vertex *vet1, Vertex *vet2) {
|
|
|
if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
|
|
|
throw invalid_argument("不存在顶点");
|
|
|
// 删除边 vet1 - vet2
|
|
|
remove(adjList[vet1], vet2);
|
|
|
remove(adjList[vet2], vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(Vertex *vet) {
|
|
|
if (adjList.count(vet))
|
|
|
return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
adjList[vet] = vector<Vertex *>();
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(Vertex *vet) {
|
|
|
if (!adjList.count(vet))
|
|
|
throw invalid_argument("不存在顶点");
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
adjList.erase(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for (auto &adj : adjList) {
|
|
|
remove(adj.second, vet);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
void print() {
|
|
|
cout << "邻接表 =" << endl;
|
|
|
for (auto &adj : adjList) {
|
|
|
const auto &key = adj.first;
|
|
|
const auto &vec = adj.second;
|
|
|
cout << key->val << ": ";
|
|
|
printVector(vetsToVals(vec));
|
|
|
}
|
|
|
}
|
|
|
};
|
|
|
```
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="graph_adjacency_list.java"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
Map<Vertex, List<Vertex>> adjList;
|
|
|
|
|
|
/* 构造方法 */
|
|
|
public GraphAdjList(Vertex[][] edges) {
|
|
|
this.adjList = new HashMap<>();
|
|
|
// 添加所有顶点和边
|
|
|
for (Vertex[] edge : edges) {
|
|
|
addVertex(edge[0]);
|
|
|
addVertex(edge[1]);
|
|
|
addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
public int size() {
|
|
|
return adjList.size();
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
public void addEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
|
|
|
throw new IllegalArgumentException();
|
|
|
// 添加边 vet1 - vet2
|
|
|
adjList.get(vet1).add(vet2);
|
|
|
adjList.get(vet2).add(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
public void removeEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)
|
|
|
throw new IllegalArgumentException();
|
|
|
// 删除边 vet1 - vet2
|
|
|
adjList.get(vet1).remove(vet2);
|
|
|
adjList.get(vet2).remove(vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
public void addVertex(Vertex vet) {
|
|
|
if (adjList.containsKey(vet))
|
|
|
return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
adjList.put(vet, new ArrayList<>());
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
public void removeVertex(Vertex vet) {
|
|
|
if (!adjList.containsKey(vet))
|
|
|
throw new IllegalArgumentException();
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
adjList.remove(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for (List<Vertex> list : adjList.values()) {
|
|
|
list.remove(vet);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
public void print() {
|
|
|
System.out.println("邻接表 =");
|
|
|
for (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {
|
|
|
List<Integer> tmp = new ArrayList<>();
|
|
|
for (Vertex vertex : pair.getValue())
|
|
|
tmp.add(vertex.val);
|
|
|
System.out.println(pair.getKey().val + ": " + tmp + ",");
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="graph_adjacency_list.cs"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
public Dictionary<Vertex, List<Vertex>> adjList;
|
|
|
|
|
|
/* 构造函数 */
|
|
|
public GraphAdjList(Vertex[][] edges) {
|
|
|
this.adjList = new Dictionary<Vertex, List<Vertex>>();
|
|
|
// 添加所有顶点和边
|
|
|
foreach (Vertex[] edge in edges) {
|
|
|
AddVertex(edge[0]);
|
|
|
AddVertex(edge[1]);
|
|
|
AddEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
public int Size() {
|
|
|
return adjList.Count;
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
public void AddEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)
|
|
|
throw new InvalidOperationException();
|
|
|
// 添加边 vet1 - vet2
|
|
|
adjList[vet1].Add(vet2);
|
|
|
adjList[vet2].Add(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
public void RemoveEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)
|
|
|
throw new InvalidOperationException();
|
|
|
// 删除边 vet1 - vet2
|
|
|
adjList[vet1].Remove(vet2);
|
|
|
adjList[vet2].Remove(vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
public void AddVertex(Vertex vet) {
|
|
|
if (adjList.ContainsKey(vet))
|
|
|
return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
adjList.Add(vet, new List<Vertex>());
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
public void RemoveVertex(Vertex vet) {
|
|
|
if (!adjList.ContainsKey(vet))
|
|
|
throw new InvalidOperationException();
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
adjList.Remove(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
foreach (List<Vertex> list in adjList.Values) {
|
|
|
list.Remove(vet);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
public void Print() {
|
|
|
Console.WriteLine("邻接表 =");
|
|
|
foreach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {
|
|
|
List<int> tmp = new();
|
|
|
foreach (Vertex vertex in pair.Value)
|
|
|
tmp.Add(vertex.val);
|
|
|
Console.WriteLine(pair.Key.val + ": [" + string.Join(", ", tmp) + "],");
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="graph_adjacency_list.go"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
type graphAdjList struct {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
adjList map[Vertex][]Vertex
|
|
|
}
|
|
|
|
|
|
/* 构造函数 */
|
|
|
func newGraphAdjList(edges [][]Vertex) *graphAdjList {
|
|
|
g := &graphAdjList{
|
|
|
adjList: make(map[Vertex][]Vertex),
|
|
|
}
|
|
|
// 添加所有顶点和边
|
|
|
for _, edge := range edges {
|
|
|
g.addVertex(edge[0])
|
|
|
g.addVertex(edge[1])
|
|
|
g.addEdge(edge[0], edge[1])
|
|
|
}
|
|
|
return g
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
func (g *graphAdjList) size() int {
|
|
|
return len(g.adjList)
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
func (g *graphAdjList) addEdge(vet1 Vertex, vet2 Vertex) {
|
|
|
_, ok1 := g.adjList[vet1]
|
|
|
_, ok2 := g.adjList[vet2]
|
|
|
if !ok1 || !ok2 || vet1 == vet2 {
|
|
|
panic("error")
|
|
|
}
|
|
|
// 添加边 vet1 - vet2, 添加匿名 struct{},
|
|
|
g.adjList[vet1] = append(g.adjList[vet1], vet2)
|
|
|
g.adjList[vet2] = append(g.adjList[vet2], vet1)
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
func (g *graphAdjList) removeEdge(vet1 Vertex, vet2 Vertex) {
|
|
|
_, ok1 := g.adjList[vet1]
|
|
|
_, ok2 := g.adjList[vet2]
|
|
|
if !ok1 || !ok2 || vet1 == vet2 {
|
|
|
panic("error")
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
g.adjList[vet1] = DeleteSliceElms(g.adjList[vet1], vet2)
|
|
|
g.adjList[vet2] = DeleteSliceElms(g.adjList[vet2], vet1)
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
func (g *graphAdjList) addVertex(vet Vertex) {
|
|
|
_, ok := g.adjList[vet]
|
|
|
if ok {
|
|
|
return
|
|
|
}
|
|
|
// 在邻接表中添加一个新链表
|
|
|
g.adjList[vet] = make([]Vertex, 0)
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
func (g *graphAdjList) removeVertex(vet Vertex) {
|
|
|
_, ok := g.adjList[vet]
|
|
|
if !ok {
|
|
|
panic("error")
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
delete(g.adjList, vet)
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for v, list := range g.adjList {
|
|
|
g.adjList[v] = DeleteSliceElms(list, vet)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
func (g *graphAdjList) print() {
|
|
|
var builder strings.Builder
|
|
|
fmt.Printf("邻接表 = \n")
|
|
|
for k, v := range g.adjList {
|
|
|
builder.WriteString("\t\t" + strconv.Itoa(k.Val) + ": ")
|
|
|
for _, vet := range v {
|
|
|
builder.WriteString(strconv.Itoa(vet.Val) + " ")
|
|
|
}
|
|
|
fmt.Println(builder.String())
|
|
|
builder.Reset()
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="graph_adjacency_list.swift"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
public private(set) var adjList: [Vertex: [Vertex]]
|
|
|
|
|
|
/* 构造方法 */
|
|
|
public init(edges: [[Vertex]]) {
|
|
|
adjList = [:]
|
|
|
// 添加所有顶点和边
|
|
|
for edge in edges {
|
|
|
addVertex(vet: edge[0])
|
|
|
addVertex(vet: edge[1])
|
|
|
addEdge(vet1: edge[0], vet2: edge[1])
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
public func size() -> Int {
|
|
|
adjList.count
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
public func addEdge(vet1: Vertex, vet2: Vertex) {
|
|
|
if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {
|
|
|
fatalError("参数错误")
|
|
|
}
|
|
|
// 添加边 vet1 - vet2
|
|
|
adjList[vet1]?.append(vet2)
|
|
|
adjList[vet2]?.append(vet1)
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
public func removeEdge(vet1: Vertex, vet2: Vertex) {
|
|
|
if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {
|
|
|
fatalError("参数错误")
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
adjList[vet1]?.removeAll(where: { $0 == vet2 })
|
|
|
adjList[vet2]?.removeAll(where: { $0 == vet1 })
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
public func addVertex(vet: Vertex) {
|
|
|
if adjList[vet] != nil {
|
|
|
return
|
|
|
}
|
|
|
// 在邻接表中添加一个新链表
|
|
|
adjList[vet] = []
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
public func removeVertex(vet: Vertex) {
|
|
|
if adjList[vet] == nil {
|
|
|
fatalError("参数错误")
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
adjList.removeValue(forKey: vet)
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for key in adjList.keys {
|
|
|
adjList[key]?.removeAll(where: { $0 == vet })
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
public func print() {
|
|
|
Swift.print("邻接表 =")
|
|
|
for pair in adjList {
|
|
|
var tmp: [Int] = []
|
|
|
for vertex in pair.value {
|
|
|
tmp.append(vertex.val)
|
|
|
}
|
|
|
Swift.print("\(pair.key.val): \(tmp),")
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
```javascript title="graph_adjacency_list.js"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
adjList;
|
|
|
|
|
|
/* 构造方法 */
|
|
|
constructor(edges) {
|
|
|
this.adjList = new Map();
|
|
|
// 添加所有顶点和边
|
|
|
for (const edge of edges) {
|
|
|
this.addVertex(edge[0]);
|
|
|
this.addVertex(edge[1]);
|
|
|
this.addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
size() {
|
|
|
return this.adjList.size;
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
addEdge(vet1, vet2) {
|
|
|
if (
|
|
|
!this.adjList.has(vet1) ||
|
|
|
!this.adjList.has(vet2) ||
|
|
|
vet1 === vet2
|
|
|
) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 添加边 vet1 - vet2
|
|
|
this.adjList.get(vet1).push(vet2);
|
|
|
this.adjList.get(vet2).push(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
removeEdge(vet1, vet2) {
|
|
|
if (
|
|
|
!this.adjList.has(vet1) ||
|
|
|
!this.adjList.has(vet2) ||
|
|
|
vet1 === vet2
|
|
|
) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);
|
|
|
this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
addVertex(vet) {
|
|
|
if (this.adjList.has(vet)) return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
this.adjList.set(vet, []);
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
removeVertex(vet) {
|
|
|
if (!this.adjList.has(vet)) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
this.adjList.delete(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for (const set of this.adjList.values()) {
|
|
|
const index = set.indexOf(vet);
|
|
|
if (index > -1) {
|
|
|
set.splice(index, 1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
print() {
|
|
|
console.log('邻接表 =');
|
|
|
for (const [key, value] of this.adjList) {
|
|
|
const tmp = [];
|
|
|
for (const vertex of value) {
|
|
|
tmp.push(vertex.val);
|
|
|
}
|
|
|
console.log(key.val + ': ' + tmp.join());
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
```typescript title="graph_adjacency_list.ts"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
adjList: Map<Vertex, Vertex[]>;
|
|
|
|
|
|
/* 构造方法 */
|
|
|
constructor(edges: Vertex[][]) {
|
|
|
this.adjList = new Map();
|
|
|
// 添加所有顶点和边
|
|
|
for (const edge of edges) {
|
|
|
this.addVertex(edge[0]);
|
|
|
this.addVertex(edge[1]);
|
|
|
this.addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
size(): number {
|
|
|
return this.adjList.size;
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
addEdge(vet1: Vertex, vet2: Vertex): void {
|
|
|
if (
|
|
|
!this.adjList.has(vet1) ||
|
|
|
!this.adjList.has(vet2) ||
|
|
|
vet1 === vet2
|
|
|
) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 添加边 vet1 - vet2
|
|
|
this.adjList.get(vet1).push(vet2);
|
|
|
this.adjList.get(vet2).push(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
removeEdge(vet1: Vertex, vet2: Vertex): void {
|
|
|
if (
|
|
|
!this.adjList.has(vet1) ||
|
|
|
!this.adjList.has(vet2) ||
|
|
|
vet1 === vet2
|
|
|
) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);
|
|
|
this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
addVertex(vet: Vertex): void {
|
|
|
if (this.adjList.has(vet)) return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
this.adjList.set(vet, []);
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
removeVertex(vet: Vertex): void {
|
|
|
if (!this.adjList.has(vet)) {
|
|
|
throw new Error('Illegal Argument Exception');
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
this.adjList.delete(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for (const set of this.adjList.values()) {
|
|
|
const index: number = set.indexOf(vet);
|
|
|
if (index > -1) {
|
|
|
set.splice(index, 1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
print(): void {
|
|
|
console.log('邻接表 =');
|
|
|
for (const [key, value] of this.adjList.entries()) {
|
|
|
const tmp = [];
|
|
|
for (const vertex of value) {
|
|
|
tmp.push(vertex.val);
|
|
|
}
|
|
|
console.log(key.val + ': ' + tmp.join());
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
```dart title="graph_adjacency_list.dart"
|
|
|
/* 基于邻接表实现的无向图类 */
|
|
|
class GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
Map<Vertex, List<Vertex>> adjList = {};
|
|
|
|
|
|
/* 构造方法 */
|
|
|
GraphAdjList(List<List<Vertex>> edges) {
|
|
|
for (List<Vertex> edge in edges) {
|
|
|
addVertex(edge[0]);
|
|
|
addVertex(edge[1]);
|
|
|
addEdge(edge[0], edge[1]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
int size() {
|
|
|
return adjList.length;
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
void addEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.containsKey(vet1) ||
|
|
|
!adjList.containsKey(vet2) ||
|
|
|
vet1 == vet2) {
|
|
|
throw ArgumentError;
|
|
|
}
|
|
|
// 添加边 vet1 - vet2
|
|
|
adjList[vet1]!.add(vet2);
|
|
|
adjList[vet2]!.add(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
void removeEdge(Vertex vet1, Vertex vet2) {
|
|
|
if (!adjList.containsKey(vet1) ||
|
|
|
!adjList.containsKey(vet2) ||
|
|
|
vet1 == vet2) {
|
|
|
throw ArgumentError;
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
adjList[vet1]!.remove(vet2);
|
|
|
adjList[vet2]!.remove(vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(Vertex vet) {
|
|
|
if (adjList.containsKey(vet)) return;
|
|
|
// 在邻接表中添加一个新链表
|
|
|
adjList[vet] = [];
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(Vertex vet) {
|
|
|
if (!adjList.containsKey(vet)) {
|
|
|
throw ArgumentError;
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
adjList.remove(vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
adjList.forEach((key, value) {
|
|
|
value.remove(vet);
|
|
|
});
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
void printAdjList() {
|
|
|
print("邻接表 =");
|
|
|
adjList.forEach((key, value) {
|
|
|
List<int> tmp = [];
|
|
|
for (Vertex vertex in value) {
|
|
|
tmp.add(vertex.val);
|
|
|
}
|
|
|
print("${key.val}: $tmp,");
|
|
|
});
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
```rust title="graph_adjacency_list.rs"
|
|
|
/* 基于邻接表实现的无向图类型 */
|
|
|
pub struct GraphAdjList {
|
|
|
// 邻接表,key: 顶点,value:该顶点的所有邻接顶点
|
|
|
pub adj_list: HashMap<Vertex, Vec<Vertex>>,
|
|
|
}
|
|
|
|
|
|
impl GraphAdjList {
|
|
|
/* 构造方法 */
|
|
|
pub fn new(edges: Vec<[Vertex; 2]>) -> Self {
|
|
|
let mut graph = GraphAdjList {
|
|
|
adj_list: HashMap::new(),
|
|
|
};
|
|
|
// 添加所有顶点和边
|
|
|
for edge in edges {
|
|
|
graph.add_vertex(edge[0]);
|
|
|
graph.add_vertex(edge[1]);
|
|
|
graph.add_edge(edge[0], edge[1]);
|
|
|
}
|
|
|
|
|
|
graph
|
|
|
}
|
|
|
|
|
|
/* 获取顶点数量 */
|
|
|
#[allow(unused)]
|
|
|
pub fn size(&self) -> usize {
|
|
|
self.adj_list.len()
|
|
|
}
|
|
|
|
|
|
/* 添加边 */
|
|
|
pub fn add_edge(&mut self, vet1: Vertex, vet2: Vertex) {
|
|
|
if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2
|
|
|
{
|
|
|
panic!("value error");
|
|
|
}
|
|
|
// 添加边 vet1 - vet2
|
|
|
self.adj_list.get_mut(&vet1).unwrap().push(vet2);
|
|
|
self.adj_list.get_mut(&vet2).unwrap().push(vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
#[allow(unused)]
|
|
|
pub fn remove_edge(&mut self, vet1: Vertex, vet2: Vertex) {
|
|
|
if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2
|
|
|
{
|
|
|
panic!("value error");
|
|
|
}
|
|
|
// 删除边 vet1 - vet2
|
|
|
self.adj_list
|
|
|
.get_mut(&vet1)
|
|
|
.unwrap()
|
|
|
.retain(|&vet| vet != vet2);
|
|
|
self.adj_list
|
|
|
.get_mut(&vet2)
|
|
|
.unwrap()
|
|
|
.retain(|&vet| vet != vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
pub fn add_vertex(&mut self, vet: Vertex) {
|
|
|
if self.adj_list.contains_key(&vet) {
|
|
|
return;
|
|
|
}
|
|
|
// 在邻接表中添加一个新链表
|
|
|
self.adj_list.insert(vet, vec![]);
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
#[allow(unused)]
|
|
|
pub fn remove_vertex(&mut self, vet: Vertex) {
|
|
|
if !self.adj_list.contains_key(&vet) {
|
|
|
panic!("value error");
|
|
|
}
|
|
|
// 在邻接表中删除顶点 vet 对应的链表
|
|
|
self.adj_list.remove(&vet);
|
|
|
// 遍历其他顶点的链表,删除所有包含 vet 的边
|
|
|
for list in self.adj_list.values_mut() {
|
|
|
list.retain(|&v| v != vet);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 打印邻接表 */
|
|
|
pub fn print(&self) {
|
|
|
println!("邻接表 =");
|
|
|
for (vertex, list) in &self.adj_list {
|
|
|
let list = list.iter().map(|vertex| vertex.val).collect::<Vec<i32>>();
|
|
|
println!("{}: {:?},", vertex.val, list);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="graph_adjacency_list.c"
|
|
|
/* 基于邻接链表实现的无向图类结构 */
|
|
|
struct graphAdjList {
|
|
|
Vertex **verticesList; // 邻接表
|
|
|
unsigned int size; // 顶点数量
|
|
|
unsigned int capacity; // 顶点容量
|
|
|
};
|
|
|
|
|
|
typedef struct graphAdjList graphAdjList;
|
|
|
|
|
|
/* 添加边 */
|
|
|
void addEdge(graphAdjList *t, int i, int j) {
|
|
|
// 越界检查
|
|
|
if (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
return;
|
|
|
}
|
|
|
// 查找欲添加边的顶点 vet1 - vet2
|
|
|
Vertex *vet1 = t->verticesList[i];
|
|
|
Vertex *vet2 = t->verticesList[j];
|
|
|
|
|
|
// 连接顶点 vet1 - vet2
|
|
|
pushBack(vet1->linked, vet2);
|
|
|
pushBack(vet2->linked, vet1);
|
|
|
}
|
|
|
|
|
|
/* 删除边 */
|
|
|
void removeEdge(graphAdjList *t, int i, int j) {
|
|
|
// 越界检查
|
|
|
if (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
// 查找欲删除边的顶点 vet1 - vet2
|
|
|
Vertex *vet1 = t->verticesList[i];
|
|
|
Vertex *vet2 = t->verticesList[j];
|
|
|
|
|
|
// 移除待删除边 vet1 - vet2
|
|
|
removeLink(vet1->linked, vet2);
|
|
|
removeLink(vet2->linked, vet1);
|
|
|
}
|
|
|
|
|
|
/* 添加顶点 */
|
|
|
void addVertex(graphAdjList *t, int val) {
|
|
|
// 若大小超过容量,则扩容
|
|
|
if (t->size >= t->capacity) {
|
|
|
Vertex **tempList = (Vertex **)malloc(sizeof(Vertex *) * 2 * t->capacity);
|
|
|
memcpy(tempList, t->verticesList, sizeof(Vertex *) * t->size);
|
|
|
free(t->verticesList); // 释放原邻接表内存
|
|
|
t->verticesList = tempList; // 指向新邻接表
|
|
|
t->capacity = t->capacity * 2; // 容量扩大至2倍
|
|
|
}
|
|
|
// 申请新顶点内存并将新顶点地址存入顶点列表
|
|
|
Vertex *newV = newVertex(val); // 建立新顶点
|
|
|
newV->pos = t->size; // 为新顶点标记下标
|
|
|
newV->linked = newLinklist(newV); // 为新顶点建立链表
|
|
|
t->verticesList[t->size] = newV; // 将新顶点加入邻接表
|
|
|
t->size++;
|
|
|
}
|
|
|
|
|
|
/* 删除顶点 */
|
|
|
void removeVertex(graphAdjList *t, unsigned int index) {
|
|
|
// 越界检查
|
|
|
if (index < 0 || index >= t->size) {
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
exit(1);
|
|
|
}
|
|
|
|
|
|
Vertex *vet = t->verticesList[index]; // 查找待删节点
|
|
|
if (vet == 0) { // 若不存在该节点,则返回
|
|
|
printf("index is:%d\n", index);
|
|
|
printf("Out of range in %s:%d\n", __FILE__, __LINE__);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
// 遍历待删除顶点的链表,将所有与待删除结点有关的边删除
|
|
|
Node *temp = vet->linked->head->next;
|
|
|
while (temp != 0) {
|
|
|
removeLink(temp->val->linked, vet); // 删除与该顶点有关的边
|
|
|
temp = temp->next;
|
|
|
}
|
|
|
|
|
|
// 将顶点前移
|
|
|
for (int i = index; i < t->size - 1; i++) {
|
|
|
t->verticesList[i] = t->verticesList[i + 1]; // 顶点前移
|
|
|
t->verticesList[i]->pos--; // 所有前移的顶点索引值减1
|
|
|
}
|
|
|
t->verticesList[t->size - 1] = 0; // 将被删除顶点的位置置 0
|
|
|
t->size--;
|
|
|
|
|
|
// 释放内存
|
|
|
freeVertex(vet);
|
|
|
}
|
|
|
|
|
|
/* 打印顶点与邻接矩阵 */
|
|
|
void printGraph(graphAdjList *t) {
|
|
|
printf("邻接表 =\n");
|
|
|
for (int i = 0; i < t->size; i++) {
|
|
|
Node *n = t->verticesList[i]->linked->head->next;
|
|
|
printf("%d: [", t->verticesList[i]->val);
|
|
|
while (n != 0) {
|
|
|
if (n->next != 0) {
|
|
|
printf("%d, ", n->val->val);
|
|
|
} else {
|
|
|
printf("%d", n->val->val);
|
|
|
}
|
|
|
n = n->next;
|
|
|
}
|
|
|
printf("]\n");
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 构造函数 */
|
|
|
graphAdjList *newGraphAdjList(unsigned int verticesCapacity) {
|
|
|
// 申请内存
|
|
|
graphAdjList *newGraph = (graphAdjList *)malloc(sizeof(graphAdjList));
|
|
|
// 建立顶点表并分配内存
|
|
|
newGraph->verticesList = (Vertex **)malloc(sizeof(Vertex *) * verticesCapacity); // 为顶点列表分配内存
|
|
|
memset(newGraph->verticesList, 0, sizeof(Vertex *) * verticesCapacity); // 顶点列表置 0
|
|
|
newGraph->size = 0; // 初始化顶点数量
|
|
|
newGraph->capacity = verticesCapacity; // 初始化顶点容量
|
|
|
// 返回图指针
|
|
|
return newGraph;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="graph_adjacency_list.zig"
|
|
|
[class]{GraphAdjList}-[func]{}
|
|
|
```
|
|
|
|
|
|
## 9.2.3 效率对比
|
|
|
|
|
|
设图中共有 $n$ 个顶点和 $m$ 条边,表 9-2 对比了邻接矩阵和邻接表的时间和空间效率。
|
|
|
|
|
|
<p align="center"> 表 9-2 邻接矩阵与邻接表对比 </p>
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
| | 邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) |
|
|
|
| ------------ | -------- | -------------- | ---------------- |
|
|
|
| 判断是否邻接 | $O(1)$ | $O(m)$ | $O(1)$ |
|
|
|
| 添加边 | $O(1)$ | $O(1)$ | $O(1)$ |
|
|
|
| 删除边 | $O(1)$ | $O(m)$ | $O(1)$ |
|
|
|
| 添加顶点 | $O(n)$ | $O(1)$ | $O(1)$ |
|
|
|
| 删除顶点 | $O(n^2)$ | $O(n + m)$ | $O(n)$ |
|
|
|
| 内存空间占用 | $O(n^2)$ | $O(n + m)$ | $O(n + m)$ |
|
|
|
|
|
|
</div>
|
|
|
|
|
|
观察表 9-2 ,似乎邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。综合来看,邻接矩阵体现了“以空间换时间”的原则,而邻接表体现了“以时间换空间”的原则。
|