You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/codes/python/chapter_heap/my_heap.py

138 lines
4.0 KiB

"""
File: my_heap.py
Created Time: 2023-02-23
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import print_heap
class MaxHeap:
"""Max-heap"""
def __init__(self, nums: list[int]):
"""Constructor, build heap based on input list"""
# Add all list elements into the heap
self.max_heap = nums
# Heapify all nodes except leaves
for i in range(self.parent(self.size() - 1), -1, -1):
self.sift_down(i)
def left(self, i: int) -> int:
"""Get index of left child node"""
return 2 * i + 1
def right(self, i: int) -> int:
"""Get index of right child node"""
return 2 * i + 2
def parent(self, i: int) -> int:
"""Get index of parent node"""
return (i - 1) // 2 # Integer division down
def swap(self, i: int, j: int):
"""Swap elements"""
self.max_heap[i], self.max_heap[j] = self.max_heap[j], self.max_heap[i]
def size(self) -> int:
"""Get heap size"""
return len(self.max_heap)
def is_empty(self) -> bool:
"""Determine if heap is empty"""
return self.size() == 0
def peek(self) -> int:
"""Access heap top element"""
return self.max_heap[0]
def push(self, val: int):
"""Push the element into heap"""
# Add node
self.max_heap.append(val)
# Heapify from bottom to top
self.sift_up(self.size() - 1)
def sift_up(self, i: int):
"""Start heapifying node i, from bottom to top"""
while True:
# Get parent node of node i
p = self.parent(i)
# When "crossing the root node" or "node does not need repair", end heapification
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
break
# Swap two nodes
self.swap(i, p)
# Loop upwards heapification
i = p
def pop(self) -> int:
"""Element exits heap"""
# Empty handling
if self.is_empty():
raise IndexError("Heap is empty")
# Swap the root node with the rightmost leaf node (swap the first element with the last element)
self.swap(0, self.size() - 1)
# Remove node
val = self.max_heap.pop()
# Heapify from top to bottom
self.sift_down(0)
# Return heap top element
return val
def sift_down(self, i: int):
"""Start heapifying node i, from top to bottom"""
while True:
# Determine the largest node among i, l, r, noted as ma
l, r, ma = self.left(i), self.right(i), i
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
ma = l
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
ma = r
# If node i is the largest or indices l, r are out of bounds, no further heapification needed, break
if ma == i:
break
# Swap two nodes
self.swap(i, ma)
# Loop downwards heapification
i = ma
def print(self):
"""Print heap (binary tree)"""
print_heap(self.max_heap)
"""Driver Code"""
if __name__ == "__main__":
# Initialize max-heap
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
print("\nEnter list and build heap")
max_heap.print()
# Access heap top element
peek = max_heap.peek()
print(f"\nHeap top element is {peek}")
# Push the element into heap
val = 7
max_heap.push(val)
print(f"\nElement {val} after pushed into heap")
max_heap.print()
# Pop the element at the heap top
peek = max_heap.pop()
print(f"\nHeap top element {peek} after exiting heap")
max_heap.print()
# Get heap size
size = max_heap.size()
print(f"\nNumber of heap elements is {size}")
# Determine if heap is empty
is_empty = max_heap.is_empty()
print(f"\nIs the heap empty {is_empty}")