18 KiB
comments |
---|
true |
12.2 Divide and conquer search strategy
We have learned that search algorithms fall into two main categories.
- Brute-force search: It is implemented by traversing the data structure, with a time complexity of
O(n)
. - Adaptive search: It utilizes a unique data organization form or prior information, and its time complexity can reach
O(\log n)
or evenO(1)
.
In fact, search algorithms with a time complexity of O(\log n)
are usually based on the divide-and-conquer strategy, such as binary search and trees.
- Each step of binary search divides the problem (searching for a target element in an array) into a smaller problem (searching for the target element in half of the array), continuing until the array is empty or the target element is found.
- Trees represent the divide-and-conquer idea, where in data structures like binary search trees, AVL trees, and heaps, the time complexity of various operations is
O(\log n)
.
The divide-and-conquer strategy of binary search is as follows.
- The problem can be divided: Binary search recursively divides the original problem (searching in an array) into subproblems (searching in half of the array), achieved by comparing the middle element with the target element.
- Subproblems are independent: In binary search, each round handles one subproblem, unaffected by other subproblems.
- The solutions of subproblems do not need to be merged: Binary search aims to find a specific element, so there is no need to merge the solutions of subproblems. When a subproblem is solved, the original problem is also solved.
Divide-and-conquer can enhance search efficiency because brute-force search can only eliminate one option per round, whereas divide-and-conquer can eliminate half of the options.
1. Implementing binary search based on divide-and-conquer
In previous chapters, binary search was implemented based on iteration. Now, we implement it based on divide-and-conquer (recursion).
!!! question
Given an ordered array `nums` of length $n$, where all elements are unique, please find the element `target`.
From a divide-and-conquer perspective, we denote the subproblem corresponding to the search interval [i, j]
as f(i, j)
.
Starting from the original problem f(0, n-1)
, perform the binary search through the following steps.
- Calculate the midpoint
m
of the search interval[i, j]
, and use it to eliminate half of the search interval. - Recursively solve the subproblem reduced by half in size, which could be
f(i, m-1)
orf(m+1, j)
. - Repeat steps
1.
and2.
, untiltarget
is found or the interval is empty and returns.
The diagram below shows the divide-and-conquer process of binary search for element 6
in an array.
Figure 12-4 The divide-and-conquer process of binary search
In the implementation code, we declare a recursive function dfs()
to solve the problem f(i, j)
:
=== "Python"
```python title="binary_search_recur.py"
def dfs(nums: list[int], target: int, i: int, j: int) -> int:
"""二分查找:问题 f(i, j)"""
# 若区间为空,代表无目标元素,则返回 -1
if i > j:
return -1
# 计算中点索引 m
m = (i + j) // 2
if nums[m] < target:
# 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j)
elif nums[m] > target:
# 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1)
else:
# 找到目标元素,返回其索引
return m
def binary_search(nums: list[int], target: int) -> int:
"""二分查找"""
n = len(nums)
# 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
```
=== "C++"
```cpp title="binary_search_recur.cpp"
/* 二分查找:问题 f(i, j) */
int dfs(vector<int> &nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(vector<int> &nums, int target) {
int n = nums.size();
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Java"
```java title="binary_search_recur.java"
/* 二分查找:问题 f(i, j) */
int dfs(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int[] nums, int target) {
int n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "C#"
```csharp title="binary_search_recur.cs"
/* 二分查找:问题 f(i, j) */
int DFS(int[] nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return DFS(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return DFS(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int BinarySearch(int[] nums, int target) {
int n = nums.Length;
// 求解问题 f(0, n-1)
return DFS(nums, target, 0, n - 1);
}
```
=== "Go"
```go title="binary_search_recur.go"
/* 二分查找:问题 f(i, j) */
func dfs(nums []int, target, i, j int) int {
// 如果区间为空,代表没有目标元素,则返回 -1
if i > j {
return -1
}
// 计算索引中点
m := i + ((j - i) >> 1)
//判断中点与目标元素大小
if nums[m] < target {
// 小于则递归右半数组
// 递归子问题 f(m+1, j)
return dfs(nums, target, m+1, j)
} else if nums[m] > target {
// 小于则递归左半数组
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m-1)
} else {
// 找到目标元素,返回其索引
return m
}
}
/* 二分查找 */
func binarySearch(nums []int, target int) int {
n := len(nums)
return dfs(nums, target, 0, n-1)
}
```
=== "Swift"
```swift title="binary_search_recur.swift"
/* 二分查找:问题 f(i, j) */
func dfs(nums: [Int], target: Int, i: Int, j: Int) -> Int {
// 若区间为空,代表无目标元素,则返回 -1
if i > j {
return -1
}
// 计算中点索引 m
let m = (i + j) / 2
if nums[m] < target {
// 递归子问题 f(m+1, j)
return dfs(nums: nums, target: target, i: m + 1, j: j)
} else if nums[m] > target {
// 递归子问题 f(i, m-1)
return dfs(nums: nums, target: target, i: i, j: m - 1)
} else {
// 找到目标元素,返回其索引
return m
}
}
/* 二分查找 */
func binarySearch(nums: [Int], target: Int) -> Int {
// 求解问题 f(0, n-1)
dfs(nums: nums, target: target, i: nums.startIndex, j: nums.endIndex - 1)
}
```
=== "JS"
```javascript title="binary_search_recur.js"
/* 二分查找:问题 f(i, j) */
function dfs(nums, target, i, j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
const m = i + ((j - i) >> 1);
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
function binarySearch(nums, target) {
const n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "TS"
```typescript title="binary_search_recur.ts"
/* 二分查找:问题 f(i, j) */
function dfs(nums: number[], target: number, i: number, j: number): number {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
const m = i + ((j - i) >> 1);
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
function binarySearch(nums: number[], target: number): number {
const n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Dart"
```dart title="binary_search_recur.dart"
/* 二分查找:问题 f(i, j) */
int dfs(List<int> nums, int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) ~/ 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(List<int> nums, int target) {
int n = nums.length;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Rust"
```rust title="binary_search_recur.rs"
/* 二分查找:问题 f(i, j) */
fn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {
// 若区间为空,代表无目标元素,则返回 -1
if i > j {
return -1;
}
let m: i32 = (i + j) / 2;
if nums[m as usize] < target {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if nums[m as usize] > target {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
fn binary_search(nums: &[i32], target: i32) -> i32 {
let n = nums.len() as i32;
// 求解问题 f(0, n-1)
dfs(nums, target, 0, n - 1)
}
```
=== "C"
```c title="binary_search_recur.c"
/* 二分查找:问题 f(i, j) */
int dfs(int nums[], int target, int i, int j) {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1;
}
// 计算中点索引 m
int m = (i + j) / 2;
if (nums[m] < target) {
// 递归子问题 f(m+1, j)
return dfs(nums, target, m + 1, j);
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
return dfs(nums, target, i, m - 1);
} else {
// 找到目标元素,返回其索引
return m;
}
}
/* 二分查找 */
int binarySearch(int nums[], int target, int numsSize) {
int n = numsSize;
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1);
}
```
=== "Kotlin"
```kotlin title="binary_search_recur.kt"
/* 二分查找:问题 f(i, j) */
fun dfs(
nums: IntArray,
target: Int,
i: Int,
j: Int
): Int {
// 若区间为空,代表无目标元素,则返回 -1
if (i > j) {
return -1
}
// 计算中点索引 m
val m = (i + j) / 2
return if (nums[m] < target) {
// 递归子问题 f(m+1, j)
dfs(nums, target, m + 1, j)
} else if (nums[m] > target) {
// 递归子问题 f(i, m-1)
dfs(nums, target, i, m - 1)
} else {
// 找到目标元素,返回其索引
m
}
}
/* 二分查找 */
fun binarySearch(nums: IntArray, target: Int): Int {
val n = nums.size
// 求解问题 f(0, n-1)
return dfs(nums, target, 0, n - 1)
}
```
=== "Ruby"
```ruby title="binary_search_recur.rb"
[class]{}-[func]{dfs}
[class]{}-[func]{binary_search}
```
=== "Zig"
```zig title="binary_search_recur.zig"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
??? pythontutor "Code Visualization"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28nums%3A%20list%5Bint%5D,%20target%3A%20int,%20i%3A%20int,%20j%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%9A%E9%97%AE%E9%A2%98%20f%28i,%20j%29%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%EF%BC%8C%E4%BB%A3%E8%A1%A8%E6%97%A0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20-1%0A%20%20%20%20if%20i%20%3E%20j%3A%0A%20%20%20%20%20%20%20%20return%20-1%0A%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%0A%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%23%20%E9%80%92%E5%BD%92%E5%AD%90%E9%97%AE%E9%A2%98%20f%28m%2B1,%20j%29%0A%20%20%20%20%20%20%20%20return%20dfs%28nums,%20target,%20m%20%2B%201,%20j%29%0A%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%23%20%E9%80%92%E5%BD%92%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i,%20m-1%29%0A%20%20%20%20%20%20%20%20return%20dfs%28nums,%20target,%20i,%20m%20-%201%29%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20%20%20%20%20return%20m%0A%0Adef%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%22%22%22%0A%20%20%20%20n%20%3D%20len%28nums%29%0A%20%20%20%20%23%20%E6%B1%82%E8%A7%A3%E9%97%AE%E9%A2%98%20f%280,%20n-1%29%0A%20%20%20%20return%20dfs%28nums,%20target,%200,%20n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28nums%3A%20list%5Bint%5D,%20target%3A%20int,%20i%3A%20int,%20j%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%9A%E9%97%AE%E9%A2%98%20f%28i,%20j%29%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%E5%8C%BA%E9%97%B4%E4%B8%BA%E7%A9%BA%EF%BC%8C%E4%BB%A3%E8%A1%A8%E6%97%A0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E8%BF%94%E5%9B%9E%20-1%0A%20%20%20%20if%20i%20%3E%20j%3A%0A%20%20%20%20%20%20%20%20return%20-1%0A%20%20%20%20%23%20%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%82%B9%E7%B4%A2%E5%BC%95%20m%0A%20%20%20%20m%20%3D%20%28i%20%2B%20j%29%20//%202%0A%20%20%20%20if%20nums%5Bm%5D%20%3C%20target%3A%0A%20%20%20%20%20%20%20%20%23%20%E9%80%92%E5%BD%92%E5%AD%90%E9%97%AE%E9%A2%98%20f%28m%2B1,%20j%29%0A%20%20%20%20%20%20%20%20return%20dfs%28nums,%20target,%20m%20%2B%201,%20j%29%0A%20%20%20%20elif%20nums%5Bm%5D%20%3E%20target%3A%0A%20%20%20%20%20%20%20%20%23%20%E9%80%92%E5%BD%92%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i,%20m-1%29%0A%20%20%20%20%20%20%20%20return%20dfs%28nums,%20target,%20i,%20m%20-%201%29%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%89%BE%E5%88%B0%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%EF%BC%8C%E8%BF%94%E5%9B%9E%E5%85%B6%E7%B4%A2%E5%BC%95%0A%20%20%20%20%20%20%20%20return%20m%0A%0Adef%20binary_search%28nums%3A%20list%5Bint%5D,%20target%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%22%22%22%0A%20%20%20%20n%20%3D%20len%28nums%29%0A%20%20%20%20%23%20%E6%B1%82%E8%A7%A3%E9%97%AE%E9%A2%98%20f%280,%20n-1%29%0A%20%20%20%20return%20dfs%28nums,%20target,%200,%20n%20-%201%29%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20target%20%3D%206%0A%20%20%20%20nums%20%3D%20%5B1,%203,%206,%208,%2012,%2015,%2023,%2026,%2031,%2035%5D%0A%0A%20%20%20%20%23%20%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE%EF%BC%88%E5%8F%8C%E9%97%AD%E5%8C%BA%E9%97%B4%EF%BC%89%0A%20%20%20%20index%20%3D%20binary_search%28nums,%20target%29%0A%20%20%20%20print%28%22%E7%9B%AE%E6%A0%87%E5%85%83%E7%B4%A0%206%20%E7%9A%84%E7%B4%A2%E5%BC%95%20%3D%20%22,%20index%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen ></a></div>