You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/chapter_heap/top_k/index.html

4309 lines
190 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

<!doctype html>
<html lang="zh-Hant" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="動畫圖解、一鍵執行的資料結構與演算法教程">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/zh-hant/chapter_heap/top_k/">
<link rel="prev" href="../build_heap/">
<link rel="next" href="../summary/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
<title>8.3   Top-k 問題 - Hello 演算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#83-top-k" class="md-skip">
跳轉至
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<button class="md-banner__button md-icon" aria-label="不再顯示此訊息">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>紙質書(簡體中文版)已發行,詳情請見<a href="/chapter_paperbook/">這裡</a></span>
</div>
</div>
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="頁首">
<a href="../.." title="Hello 演算法" class="md-header__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 演算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
8.3 &nbsp; Top-k 問題
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="深色模式" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="深色模式" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="淺色模式" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="淺色模式" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="選擇語言">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/chapter_heap/top_k/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/chapter_heap/top_k/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/chapter_heap/top_k/" hreflang="en" class="md-select__link">
English
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜尋" placeholder="搜尋" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="搜尋">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空" aria-label="清空" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜尋引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="導航" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 演算法" class="md-nav__button md-logo" aria-label="Hello 演算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello 演算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往倉庫" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
<span class="md-ellipsis">
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
第 0 章 &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
第 0 章 &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 &nbsp; 關於本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 &nbsp; 如何使用本書
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
第 1 章 &nbsp; 初識演算法
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 1 章 &nbsp; 初識演算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 &nbsp; 演算法無處不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 &nbsp; 演算法是什麼
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 複雜度分析
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 複雜度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 &nbsp; 演算法效率評估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 &nbsp; 迭代與遞迴
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 &nbsp; 時間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 &nbsp; 空間複雜度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
第 3 章 &nbsp; 資料結構
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
第 3 章 &nbsp; 資料結構
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 &nbsp; 資料結構分類
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 &nbsp; 基本資料型別
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 &nbsp; 數字編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 &nbsp; 字元編碼 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
第 4 章 &nbsp; 陣列與鏈結串列
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
第 4 章 &nbsp; 陣列與鏈結串列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 &nbsp; 陣列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 &nbsp; 鏈結串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 &nbsp; 串列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 &nbsp; 記憶體與快取 *
</span>
<span class="md-status md-status--new" title="最近新增">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
第 5 章 &nbsp; 堆疊與佇列
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 5 章 &nbsp; 堆疊與佇列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 &nbsp; 堆疊
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 &nbsp; 佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 &nbsp; 雙向佇列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 雜湊表
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 雜湊表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 &nbsp; 雜湊表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 &nbsp; 雜湊衝突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 &nbsp; 雜湊演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
第 7 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
第 7 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 &nbsp; 二元樹
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 &nbsp; 二元樹走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 &nbsp; 二元樹陣列表示
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 &nbsp; 二元搜尋樹
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 &nbsp; AVL *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
第 8 章 &nbsp; 堆積
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
第 8 章 &nbsp; 堆積
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 &nbsp; 堆積
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 &nbsp; 建堆積操作
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
8.3 &nbsp; Top-k 問題
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
8.3 &nbsp; Top-k 問題
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#831" class="md-nav__link">
<span class="md-ellipsis">
8.3.1 &nbsp; 方法一:走訪選擇
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#832" class="md-nav__link">
<span class="md-ellipsis">
8.3.2 &nbsp; 方法二:排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#833" class="md-nav__link">
<span class="md-ellipsis">
8.3.3 &nbsp; 方法三:堆積
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
第 9 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
第 9 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 &nbsp; 圖基礎操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 &nbsp; 圖的走訪
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
第 10 章 &nbsp; 搜尋
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
第 10 章 &nbsp; 搜尋
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 &nbsp; 二分搜尋
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 &nbsp; 二分搜尋插入點
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 &nbsp; 二分搜尋邊界
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 &nbsp; 雜湊最佳化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 &nbsp; 重識搜尋演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
第 11 章 &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
第 11 章 &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 &nbsp; 排序演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 &nbsp; 選擇排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 &nbsp; 泡沫排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 &nbsp; 合併排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 &nbsp; 堆積排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 &nbsp; 計數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 &nbsp; 基數排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
第 12 章 &nbsp; 分治
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
第 12 章 &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 &nbsp; 分治演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 &nbsp; 分治搜尋策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 &nbsp; 構建樹問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 &nbsp; 河內塔問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
第 13 章 &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
第 13 章 &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 &nbsp; 回溯演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 &nbsp; 全排列問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 &nbsp; 子集和問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
第 14 章 &nbsp; 動態規劃
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
第 14 章 &nbsp; 動態規劃
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 &nbsp; 初探動態規劃
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 &nbsp; DP 問題特性
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 &nbsp; DP 解題思路
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 &nbsp; 0-1 背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 &nbsp; 完全背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 &nbsp; 編輯距離問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
第 15 章 &nbsp; 貪婪
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
第 15 章 &nbsp; 貪婪
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 &nbsp; 貪婪演算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 &nbsp; 分數背包問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 &nbsp; 最大容量問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 &nbsp; 最大切分乘積問題
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 &nbsp; 小結
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
第 16 章 &nbsp; 附錄
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
第 16 章 &nbsp; 附錄
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 &nbsp; 程式設計環境安裝
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 &nbsp; 一起參與創作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 &nbsp; 術語表
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
<span class="md-ellipsis">
參考文獻
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
參考文獻
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目錄">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目錄
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#831" class="md-nav__link">
<span class="md-ellipsis">
8.3.1 &nbsp; 方法一:走訪選擇
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#832" class="md-nav__link">
<span class="md-ellipsis">
8.3.2 &nbsp; 方法二:排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#833" class="md-nav__link">
<span class="md-ellipsis">
8.3.3 &nbsp; 方法三:堆積
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/zh-hant/docs/chapter_heap/top_k.md"
title="編輯此頁"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="83-top-k">8.3 &nbsp; Top-k 問題<a class="headerlink" href="#83-top-k" title="Permanent link">&para;</a></h1>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>給定一個長度為 <span class="arithmatex">\(n\)</span> 的無序陣列 <code>nums</code> ,請返回陣列中最大的 <span class="arithmatex">\(k\)</span> 個元素。</p>
</div>
<p>對於該問題,我們先介紹兩種思路比較直接的解法,再介紹效率更高的堆積解法。</p>
<h2 id="831">8.3.1 &nbsp; 方法一:走訪選擇<a class="headerlink" href="#831" title="Permanent link">&para;</a></h2>
<p>我們可以進行圖 8-6 所示的 <span class="arithmatex">\(k\)</span> 輪走訪,分別在每輪中提取第 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(2\)</span><span class="arithmatex">\(\dots\)</span><span class="arithmatex">\(k\)</span> 大的元素,時間複雜度為 <span class="arithmatex">\(O(nk)\)</span></p>
<p>此方法只適用於 <span class="arithmatex">\(k \ll n\)</span> 的情況,因為當 <span class="arithmatex">\(k\)</span><span class="arithmatex">\(n\)</span> 比較接近時,其時間複雜度趨向於 <span class="arithmatex">\(O(n^2)\)</span> ,非常耗時。</p>
<p><a class="glightbox" href="../top_k.assets/top_k_traversal.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="走訪尋找最大的 k 個元素" class="animation-figure" src="../top_k.assets/top_k_traversal.png" /></a></p>
<p align="center"> 圖 8-6 &nbsp; 走訪尋找最大的 k 個元素 </p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p><span class="arithmatex">\(k = n\)</span> 時,我們可以得到完整的有序序列,此時等價於“選擇排序”演算法。</p>
</div>
<h2 id="832">8.3.2 &nbsp; 方法二:排序<a class="headerlink" href="#832" title="Permanent link">&para;</a></h2>
<p>如圖 8-7 所示,我們可以先對陣列 <code>nums</code> 進行排序,再返回最右邊的 <span class="arithmatex">\(k\)</span> 個元素,時間複雜度為 <span class="arithmatex">\(O(n \log n)\)</span></p>
<p>顯然,該方法“超額”完成任務了,因為我們只需找出最大的 <span class="arithmatex">\(k\)</span> 個元素即可,而不需要排序其他元素。</p>
<p><a class="glightbox" href="../top_k.assets/top_k_sorting.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="排序尋找最大的 k 個元素" class="animation-figure" src="../top_k.assets/top_k_sorting.png" /></a></p>
<p align="center"> 圖 8-7 &nbsp; 排序尋找最大的 k 個元素 </p>
<h2 id="833">8.3.3 &nbsp; 方法三:堆積<a class="headerlink" href="#833" title="Permanent link">&para;</a></h2>
<p>我們可以基於堆積更加高效地解決 Top-k 問題,流程如圖 8-8 所示。</p>
<ol>
<li>初始化一個小頂堆積,其堆積頂元素最小。</li>
<li>先將陣列的前 <span class="arithmatex">\(k\)</span> 個元素依次入堆積。</li>
<li>從第 <span class="arithmatex">\(k + 1\)</span> 個元素開始,若當前元素大於堆積頂元素,則將堆積頂元素出堆積,並將當前元素入堆積。</li>
<li>走訪完成後,堆積中儲存的就是最大的 <span class="arithmatex">\(k\)</span> 個元素。</li>
</ol>
<div class="tabbed-set tabbed-alternate" data-tabs="1:9"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">&lt;1&gt;</label><label for="__tabbed_1_2">&lt;2&gt;</label><label for="__tabbed_1_3">&lt;3&gt;</label><label for="__tabbed_1_4">&lt;4&gt;</label><label for="__tabbed_1_5">&lt;5&gt;</label><label for="__tabbed_1_6">&lt;6&gt;</label><label for="__tabbed_1_7">&lt;7&gt;</label><label for="__tabbed_1_8">&lt;8&gt;</label><label for="__tabbed_1_9">&lt;9&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="基於堆積尋找最大的 k 個元素" class="animation-figure" src="../top_k.assets/top_k_heap_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step2" class="animation-figure" src="../top_k.assets/top_k_heap_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step3" class="animation-figure" src="../top_k.assets/top_k_heap_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step4" class="animation-figure" src="../top_k.assets/top_k_heap_step4.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step5" class="animation-figure" src="../top_k.assets/top_k_heap_step5.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step6" class="animation-figure" src="../top_k.assets/top_k_heap_step6.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step7.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step7" class="animation-figure" src="../top_k.assets/top_k_heap_step7.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step8.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step8" class="animation-figure" src="../top_k.assets/top_k_heap_step8.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../top_k.assets/top_k_heap_step9.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="top_k_heap_step9" class="animation-figure" src="../top_k.assets/top_k_heap_step9.png" /></a></p>
</div>
</div>
</div>
<p align="center"> 圖 8-8 &nbsp; 基於堆積尋找最大的 k 個元素 </p>
<p>示例程式碼如下:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:14"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><input id="__tabbed_2_13" name="__tabbed_2" type="radio" /><input id="__tabbed_2_14" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Kotlin</label><label for="__tabbed_2_13">Ruby</label><label for="__tabbed_2_14">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">top_k_heap</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">k</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]:</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;基於堆積查詢陣列中最大的 k 個元素&quot;&quot;&quot;</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="c1"># 初始化小頂堆積</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="n">heap</span> <span class="o">=</span> <span class="p">[]</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="c1"># 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">k</span><span class="p">):</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="n">heapq</span><span class="o">.</span><span class="n">heappush</span><span class="p">(</span><span class="n">heap</span><span class="p">,</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="c1"># 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)):</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a> <span class="c1"># 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">heap</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="n">heapq</span><span class="o">.</span><span class="n">heappop</span><span class="p">(</span><span class="n">heap</span><span class="p">)</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="n">heapq</span><span class="o">.</span><span class="n">heappush</span><span class="p">(</span><span class="n">heap</span><span class="p">,</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a> <span class="k">return</span> <span class="n">heap</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="n">priority_queue</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">greater</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">topKHeap</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="n">priority_queue</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">greater</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">();</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">top</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">pop</span><span class="p">();</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-17" name="__codelineno-1-17" href="#__codelineno-1-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-1-18" name="__codelineno-1-18" href="#__codelineno-1-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="nf">topKHeap</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">PriorityQueue</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;</span><span class="p">();</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">);</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">peek</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">poll</span><span class="p">();</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">);</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-17" name="__codelineno-2-17" href="#__codelineno-2-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-2-18" name="__codelineno-2-18" href="#__codelineno-2-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="n">PriorityQueue</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">TopKHeap</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="n">PriorityQueue</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="p">();</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">Enqueue</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">Peek</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">Dequeue</span><span class="p">();</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">Enqueue</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">topKHeap</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">k</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="nx">minHeap</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="nx">h</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">minHeap</span><span class="p">{}</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">heap</span><span class="p">.</span><span class="nx">Init</span><span class="p">(</span><span class="nx">h</span><span class="p">)</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">heap</span><span class="p">.</span><span class="nx">Push</span><span class="p">(</span><span class="nx">h</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">);</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">h</span><span class="p">.</span><span class="nx">Top</span><span class="p">().(</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="nx">heap</span><span class="p">.</span><span class="nx">Pop</span><span class="p">(</span><span class="nx">h</span><span class="p">)</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="nx">heap</span><span class="p">.</span><span class="nx">Push</span><span class="p">(</span><span class="nx">h</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">h</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">topKHeap</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">],</span> <span class="n">k</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[</span><span class="nb">Int</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="c1">// 初始化一個小頂堆積,並將前 k 個元素建堆積</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="kd">var</span> <span class="nv">heap</span> <span class="p">=</span> <span class="n">Heap</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="kr">prefix</span><span class="p">(</span><span class="n">k</span><span class="p">))</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="n">nums</span><span class="p">.</span><span class="bp">indices</span><span class="p">.</span><span class="bp">dropFirst</span><span class="p">(</span><span class="n">k</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">heap</span><span class="p">.</span><span class="bp">min</span><span class="p">()</span><span class="o">!</span> <span class="p">{</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="kc">_</span> <span class="p">=</span> <span class="n">heap</span><span class="p">.</span><span class="n">removeMin</span><span class="p">()</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a> <span class="n">heap</span><span class="p">.</span><span class="bp">insert</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a> <span class="p">}</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a> <span class="p">}</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a> <span class="k">return</span> <span class="n">heap</span><span class="p">.</span><span class="n">unordered</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 元素入堆積 */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="o">-</span><span class="nx">val</span><span class="p">);</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="p">}</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="cm">/* 元素出堆積 */</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="kd">function</span><span class="w"> </span><span class="nx">popMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">pop</span><span class="p">();</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="p">}</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="cm">/* 訪問堆積頂元素 */</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="kd">function</span><span class="w"> </span><span class="nx">peekMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-6-16" name="__codelineno-6-16" href="#__codelineno-6-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">peek</span><span class="p">();</span>
<a id="__codelineno-6-17" name="__codelineno-6-17" href="#__codelineno-6-17"></a><span class="p">}</span>
<a id="__codelineno-6-18" name="__codelineno-6-18" href="#__codelineno-6-18"></a>
<a id="__codelineno-6-19" name="__codelineno-6-19" href="#__codelineno-6-19"></a><span class="cm">/* 取出堆積中元素 */</span>
<a id="__codelineno-6-20" name="__codelineno-6-20" href="#__codelineno-6-20"></a><span class="kd">function</span><span class="w"> </span><span class="nx">getMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-21" name="__codelineno-6-21" href="#__codelineno-6-21"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-6-22" name="__codelineno-6-22" href="#__codelineno-6-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">getMaxHeap</span><span class="p">().</span><span class="nx">map</span><span class="p">((</span><span class="nx">num</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="o">-</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-6-23" name="__codelineno-6-23" href="#__codelineno-6-23"></a><span class="p">}</span>
<a id="__codelineno-6-24" name="__codelineno-6-24" href="#__codelineno-6-24"></a>
<a id="__codelineno-6-25" name="__codelineno-6-25" href="#__codelineno-6-25"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-6-26" name="__codelineno-6-26" href="#__codelineno-6-26"></a><span class="kd">function</span><span class="w"> </span><span class="nx">topKHeap</span><span class="p">(</span><span class="nx">nums</span><span class="p">,</span><span class="w"> </span><span class="nx">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-27" name="__codelineno-6-27" href="#__codelineno-6-27"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-6-28" name="__codelineno-6-28" href="#__codelineno-6-28"></a><span class="w"> </span><span class="c1">// 請注意:我們將堆積中所有元素取反,從而用大頂堆積來模擬小頂堆積</span>
<a id="__codelineno-6-29" name="__codelineno-6-29" href="#__codelineno-6-29"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">maxHeap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">MaxHeap</span><span class="p">([]);</span>
<a id="__codelineno-6-30" name="__codelineno-6-30" href="#__codelineno-6-30"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-6-31" name="__codelineno-6-31" href="#__codelineno-6-31"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-32" name="__codelineno-6-32" href="#__codelineno-6-32"></a><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]);</span>
<a id="__codelineno-6-33" name="__codelineno-6-33" href="#__codelineno-6-33"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-34" name="__codelineno-6-34" href="#__codelineno-6-34"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-6-35" name="__codelineno-6-35" href="#__codelineno-6-35"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-36" name="__codelineno-6-36" href="#__codelineno-6-36"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-6-37" name="__codelineno-6-37" href="#__codelineno-6-37"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">peekMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-38" name="__codelineno-6-38" href="#__codelineno-6-38"></a><span class="w"> </span><span class="nx">popMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">);</span>
<a id="__codelineno-6-39" name="__codelineno-6-39" href="#__codelineno-6-39"></a><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]);</span>
<a id="__codelineno-6-40" name="__codelineno-6-40" href="#__codelineno-6-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-41" name="__codelineno-6-41" href="#__codelineno-6-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-42" name="__codelineno-6-42" href="#__codelineno-6-42"></a><span class="w"> </span><span class="c1">// 返回堆積中元素</span>
<a id="__codelineno-6-43" name="__codelineno-6-43" href="#__codelineno-6-43"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">getMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">);</span>
<a id="__codelineno-6-44" name="__codelineno-6-44" href="#__codelineno-6-44"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 元素入堆積 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="o">:</span><span class="w"> </span><span class="kt">MaxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="o">-</span><span class="nx">val</span><span class="p">);</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="p">}</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="cm">/* 元素出堆積 */</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="kd">function</span><span class="w"> </span><span class="nx">popMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="o">:</span><span class="w"> </span><span class="kt">MaxHeap</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">pop</span><span class="p">();</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="p">}</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="cm">/* 訪問堆積頂元素 */</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="kd">function</span><span class="w"> </span><span class="nx">peekMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="o">:</span><span class="w"> </span><span class="kt">MaxHeap</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">peek</span><span class="p">();</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="p">}</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="cm">/* 取出堆積中元素 */</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="kd">function</span><span class="w"> </span><span class="nx">getMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="o">:</span><span class="w"> </span><span class="kt">MaxHeap</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-7-22" name="__codelineno-7-22" href="#__codelineno-7-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">maxHeap</span><span class="p">.</span><span class="nx">getMaxHeap</span><span class="p">().</span><span class="nx">map</span><span class="p">((</span><span class="nx">num</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="o">-</span><span class="nx">num</span><span class="p">);</span>
<a id="__codelineno-7-23" name="__codelineno-7-23" href="#__codelineno-7-23"></a><span class="p">}</span>
<a id="__codelineno-7-24" name="__codelineno-7-24" href="#__codelineno-7-24"></a>
<a id="__codelineno-7-25" name="__codelineno-7-25" href="#__codelineno-7-25"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-7-26" name="__codelineno-7-26" href="#__codelineno-7-26"></a><span class="kd">function</span><span class="w"> </span><span class="nx">topKHeap</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[],</span><span class="w"> </span><span class="nx">k</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-27" name="__codelineno-7-27" href="#__codelineno-7-27"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-7-28" name="__codelineno-7-28" href="#__codelineno-7-28"></a><span class="w"> </span><span class="c1">// 請注意:我們將堆積中所有元素取反,從而用大頂堆積來模擬小頂堆積</span>
<a id="__codelineno-7-29" name="__codelineno-7-29" href="#__codelineno-7-29"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">maxHeap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">MaxHeap</span><span class="p">([]);</span>
<a id="__codelineno-7-30" name="__codelineno-7-30" href="#__codelineno-7-30"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-7-31" name="__codelineno-7-31" href="#__codelineno-7-31"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-32" name="__codelineno-7-32" href="#__codelineno-7-32"></a><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]);</span>
<a id="__codelineno-7-33" name="__codelineno-7-33" href="#__codelineno-7-33"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-34" name="__codelineno-7-34" href="#__codelineno-7-34"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-7-35" name="__codelineno-7-35" href="#__codelineno-7-35"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">k</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-36" name="__codelineno-7-36" href="#__codelineno-7-36"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-7-37" name="__codelineno-7-37" href="#__codelineno-7-37"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">peekMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-38" name="__codelineno-7-38" href="#__codelineno-7-38"></a><span class="w"> </span><span class="nx">popMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">);</span>
<a id="__codelineno-7-39" name="__codelineno-7-39" href="#__codelineno-7-39"></a><span class="w"> </span><span class="nx">pushMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]);</span>
<a id="__codelineno-7-40" name="__codelineno-7-40" href="#__codelineno-7-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-41" name="__codelineno-7-41" href="#__codelineno-7-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-42" name="__codelineno-7-42" href="#__codelineno-7-42"></a><span class="w"> </span><span class="c1">// 返回堆積中元素</span>
<a id="__codelineno-7-43" name="__codelineno-7-43" href="#__codelineno-7-43"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">getMinHeap</span><span class="p">(</span><span class="nx">maxHeap</span><span class="p">);</span>
<a id="__codelineno-7-44" name="__codelineno-7-44" href="#__codelineno-7-44"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="n">MinHeap</span><span class="w"> </span><span class="n">topKHeap</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積,將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="n">MinHeap</span><span class="w"> </span><span class="n">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">MinHeap</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">sublist</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">));</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">peek</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">pop</span><span class="p">();</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span> <span class="nf">top_k_heap</span><span class="p">(</span><span class="n">nums</span>: <span class="nb">Vec</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">k</span>: <span class="kt">usize</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nc">BinaryHeap</span><span class="o">&lt;</span><span class="n">Reverse</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="c1">// BinaryHeap 是大頂堆積,使用 Reverse 將元素取反,從而實現小頂堆積</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">BinaryHeap</span>::<span class="o">&lt;</span><span class="n">Reverse</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;&gt;</span>::<span class="n">new</span><span class="p">();</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="o">&amp;</span><span class="n">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">iter</span><span class="p">().</span><span class="n">take</span><span class="p">(</span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">Reverse</span><span class="p">(</span><span class="n">num</span><span class="p">));</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="o">&amp;</span><span class="n">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">iter</span><span class="p">().</span><span class="n">skip</span><span class="p">(</span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">peek</span><span class="p">().</span><span class="n">unwrap</span><span class="p">().</span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">pop</span><span class="p">();</span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">Reverse</span><span class="p">(</span><span class="n">num</span><span class="p">));</span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-17" name="__codelineno-9-17" href="#__codelineno-9-17"></a><span class="w"> </span><span class="n">heap</span>
<a id="__codelineno-9-18" name="__codelineno-9-18" href="#__codelineno-9-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 元素入堆積 */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">pushMinHeap</span><span class="p">(</span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="n">push</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="p">}</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="cm">/* 元素出堆積 */</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="kt">int</span><span class="w"> </span><span class="nf">popMinHeap</span><span class="p">(</span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="n">pop</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">);</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="p">}</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="cm">/* 訪問堆積頂元素 */</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="kt">int</span><span class="w"> </span><span class="nf">peekMinHeap</span><span class="p">(</span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="c1">// 元素取反</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="n">peek</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">);</span>
<a id="__codelineno-10-17" name="__codelineno-10-17" href="#__codelineno-10-17"></a><span class="p">}</span>
<a id="__codelineno-10-18" name="__codelineno-10-18" href="#__codelineno-10-18"></a>
<a id="__codelineno-10-19" name="__codelineno-10-19" href="#__codelineno-10-19"></a><span class="cm">/* 取出堆積中元素 */</span>
<a id="__codelineno-10-20" name="__codelineno-10-20" href="#__codelineno-10-20"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">getMinHeap</span><span class="p">(</span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-21" name="__codelineno-10-21" href="#__codelineno-10-21"></a><span class="w"> </span><span class="c1">// 將堆積中所有元素取反並存入 res 陣列</span>
<a id="__codelineno-10-22" name="__codelineno-10-22" href="#__codelineno-10-22"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">size</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-10-23" name="__codelineno-10-23" href="#__codelineno-10-23"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-24" name="__codelineno-10-24" href="#__codelineno-10-24"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">-</span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">data</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-10-25" name="__codelineno-10-25" href="#__codelineno-10-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-26" name="__codelineno-10-26" href="#__codelineno-10-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-27" name="__codelineno-10-27" href="#__codelineno-10-27"></a><span class="p">}</span>
<a id="__codelineno-10-28" name="__codelineno-10-28" href="#__codelineno-10-28"></a>
<a id="__codelineno-10-29" name="__codelineno-10-29" href="#__codelineno-10-29"></a><span class="cm">/* 取出堆積中元素 */</span>
<a id="__codelineno-10-30" name="__codelineno-10-30" href="#__codelineno-10-30"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">getMinHeap</span><span class="p">(</span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-31" name="__codelineno-10-31" href="#__codelineno-10-31"></a><span class="w"> </span><span class="c1">// 將堆積中所有元素取反並存入 res 陣列</span>
<a id="__codelineno-10-32" name="__codelineno-10-32" href="#__codelineno-10-32"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">size</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-10-33" name="__codelineno-10-33" href="#__codelineno-10-33"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-34" name="__codelineno-10-34" href="#__codelineno-10-34"></a><span class="w"> </span><span class="n">res</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">-</span><span class="n">maxHeap</span><span class="o">-&gt;</span><span class="n">data</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-10-35" name="__codelineno-10-35" href="#__codelineno-10-35"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-36" name="__codelineno-10-36" href="#__codelineno-10-36"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-37" name="__codelineno-10-37" href="#__codelineno-10-37"></a><span class="p">}</span>
<a id="__codelineno-10-38" name="__codelineno-10-38" href="#__codelineno-10-38"></a>
<a id="__codelineno-10-39" name="__codelineno-10-39" href="#__codelineno-10-39"></a><span class="c1">// 基於堆積查詢陣列中最大的 k 個元素的函式</span>
<a id="__codelineno-10-40" name="__codelineno-10-40" href="#__codelineno-10-40"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">topKHeap</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">sizeNums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-41" name="__codelineno-10-41" href="#__codelineno-10-41"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-10-42" name="__codelineno-10-42" href="#__codelineno-10-42"></a><span class="w"> </span><span class="c1">// 請注意:我們將堆積中所有元素取反,從而用大頂堆積來模擬小頂堆積</span>
<a id="__codelineno-10-43" name="__codelineno-10-43" href="#__codelineno-10-43"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">empty</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-10-44" name="__codelineno-10-44" href="#__codelineno-10-44"></a><span class="w"> </span><span class="n">MaxHeap</span><span class="w"> </span><span class="o">*</span><span class="n">maxHeap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newMaxHeap</span><span class="p">(</span><span class="n">empty</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-10-45" name="__codelineno-10-45" href="#__codelineno-10-45"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-10-46" name="__codelineno-10-46" href="#__codelineno-10-46"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-47" name="__codelineno-10-47" href="#__codelineno-10-47"></a><span class="w"> </span><span class="n">pushMinHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-10-48" name="__codelineno-10-48" href="#__codelineno-10-48"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-49" name="__codelineno-10-49" href="#__codelineno-10-49"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-10-50" name="__codelineno-10-50" href="#__codelineno-10-50"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">sizeNums</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-51" name="__codelineno-10-51" href="#__codelineno-10-51"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-10-52" name="__codelineno-10-52" href="#__codelineno-10-52"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">peekMinHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-53" name="__codelineno-10-53" href="#__codelineno-10-53"></a><span class="w"> </span><span class="n">popMinHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">);</span>
<a id="__codelineno-10-54" name="__codelineno-10-54" href="#__codelineno-10-54"></a><span class="w"> </span><span class="n">pushMinHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-10-55" name="__codelineno-10-55" href="#__codelineno-10-55"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-56" name="__codelineno-10-56" href="#__codelineno-10-56"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-57" name="__codelineno-10-57" href="#__codelineno-10-57"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">getMinHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">);</span>
<a id="__codelineno-10-58" name="__codelineno-10-58" href="#__codelineno-10-58"></a><span class="w"> </span><span class="c1">// 釋放記憶體</span>
<a id="__codelineno-10-59" name="__codelineno-10-59" href="#__codelineno-10-59"></a><span class="w"> </span><span class="n">delMaxHeap</span><span class="p">(</span><span class="n">maxHeap</span><span class="p">);</span>
<a id="__codelineno-10-60" name="__codelineno-10-60" href="#__codelineno-10-60"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-10-61" name="__codelineno-10-61" href="#__codelineno-10-61"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 基於堆積查詢陣列中最大的 k 個元素 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">topKHeap</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="n">Queue</span><span class="o">&lt;</span><span class="kt">Int</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="c1">// 初始化小頂堆積</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">PriorityQueue</span><span class="o">&lt;</span><span class="kt">Int</span><span class="o">&gt;</span><span class="p">()</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="c1">// 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">0.</span><span class="p">.</span><span class="o">&lt;</span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="c1">// 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">k</span><span class="p">..</span><span class="o">&lt;</span><span class="n">nums</span><span class="p">.</span><span class="na">size</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="c1">// 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">peek</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">poll</span><span class="p">()</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="na">offer</span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1">### 基於堆積查詢陣列中最大的 k 個元素 ###</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">top_k_heap</span><span class="p">(</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">)</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1"># 初始化小頂堆積</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="c1"># 請注意:我們將堆積中所有元素取反,從而用大頂堆積來模擬小頂堆積</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="n">max_heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="no">MaxHeap</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="o">[]</span><span class="p">)</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="c1"># 將陣列的前 k 個元素入堆積</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">...</span><span class="n">k</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="n">push_min_heap</span><span class="p">(</span><span class="n">max_heap</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="c1"># 從第 k+1 個元素開始,保持堆積的長度為 k</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">k</span><span class="o">...</span><span class="n">nums</span><span class="o">.</span><span class="n">length</span>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="w"> </span><span class="c1"># 若當前元素大於堆積頂元素,則將堆積頂元素出堆積、當前元素入堆積</span>
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">peek_min_heap</span><span class="p">(</span><span class="n">max_heap</span><span class="p">)</span>
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="w"> </span><span class="n">pop_min_heap</span><span class="p">(</span><span class="n">max_heap</span><span class="p">)</span>
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="n">push_min_heap</span><span class="p">(</span><span class="n">max_heap</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a>
<a id="__codelineno-12-21" name="__codelineno-12-21" href="#__codelineno-12-21"></a><span class="w"> </span><span class="n">get_min_heap</span><span class="p">(</span><span class="n">max_heap</span><span class="p">)</span>
<a id="__codelineno-12-22" name="__codelineno-12-22" href="#__codelineno-12-22"></a><span class="k">end</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">topKHeap</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<details class="pythontutor">
<summary>視覺化執行</summary>
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D%2C%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E6%96%BC%E5%A0%86%E7%A9%8D%E6%9F%A5%E8%A9%A2%E9%99%A3%E5%88%97%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E5%80%8B%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A0%82%E5%A0%86%E7%A9%8D%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%87%E9%99%A3%E5%88%97%E7%9A%84%E5%89%8D%20k%20%E5%80%8B%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%E7%A9%8D%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap%2C%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E5%BE%9E%E7%AC%AC%20k%2B1%20%E5%80%8B%E5%85%83%E7%B4%A0%E9%96%8B%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%A9%8D%E7%9A%84%E9%95%B7%E5%BA%A6%E7%82%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k%2C%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E7%95%B6%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E6%96%BC%E5%A0%86%E7%A9%8D%E9%A0%82%E5%85%83%E7%B4%A0%EF%BC%8C%E5%89%87%E5%B0%87%E5%A0%86%E7%A9%8D%E9%A0%82%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E7%A9%8D%E3%80%81%E7%95%B6%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%E7%A9%8D%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap%2C%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%207%2C%206%2C%203%2C%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums%2C%20k%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D%2C%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E6%96%BC%E5%A0%86%E7%A9%8D%E6%9F%A5%E8%A9%A2%E9%99%A3%E5%88%97%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E5%80%8B%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A0%82%E5%A0%86%E7%A9%8D%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%87%E9%99%A3%E5%88%97%E7%9A%84%E5%89%8D%20k%20%E5%80%8B%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%E7%A9%8D%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap%2C%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E5%BE%9E%E7%AC%AC%20k%2B1%20%E5%80%8B%E5%85%83%E7%B4%A0%E9%96%8B%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%A9%8D%E7%9A%84%E9%95%B7%E5%BA%A6%E7%82%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k%2C%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E7%95%B6%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E6%96%BC%E5%A0%86%E7%A9%8D%E9%A0%82%E5%85%83%E7%B4%A0%EF%BC%8C%E5%89%87%E5%B0%87%E5%A0%86%E7%A9%8D%E9%A0%82%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E7%A9%8D%E3%80%81%E7%95%B6%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%E7%A9%8D%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap%2C%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%207%2C%206%2C%203%2C%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums%2C%20k%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 &gt;</a></div></p>
</details>
<p>總共執行了 <span class="arithmatex">\(n\)</span> 輪入堆積和出堆積,堆積的最大長度為 <span class="arithmatex">\(k\)</span> ,因此時間複雜度為 <span class="arithmatex">\(O(n \log k)\)</span> 。該方法的效率很高,當 <span class="arithmatex">\(k\)</span> 較小時,時間複雜度趨向 <span class="arithmatex">\(O(n)\)</span> ;當 <span class="arithmatex">\(k\)</span> 較大時,時間複雜度不會超過 <span class="arithmatex">\(O(n \log n)\)</span></p>
<p>另外,該方法適用於動態資料流的使用場景。在不斷加入資料時,我們可以持續維護堆積內的元素,從而實現最大的 <span class="arithmatex">\(k\)</span> 個元素的動態更新。</p>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="頁脚"
>
<!-- Link to previous page -->
<a
href="../build_heap/"
class="md-footer__link md-footer__link--prev"
aria-label="上一頁: 8.2 &amp;nbsp; 建堆積操作"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
8.2 &nbsp; 建堆積操作
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../summary/"
class="md-footer__link md-footer__link--next"
aria-label="下一頁: 8.4 &amp;nbsp; 小結"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
8.4 &nbsp; 小結
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments"></h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="
"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到頂部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="頁脚" >
<a href="../build_heap/" class="md-footer__link md-footer__link--prev" aria-label="上一頁: 8.2 &amp;nbsp; 建堆積操作">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一頁
</span>
<div class="md-ellipsis">
8.2 &nbsp; 建堆積操作
</div>
</div>
</a>
<a href="../summary/" class="md-footer__link md-footer__link--next" aria-label="下一頁: 8.4 &amp;nbsp; 小結">
<div class="md-footer__title">
<span class="md-footer__direction">
下一頁
</span>
<div class="md-ellipsis">
8.4 &nbsp; 小結
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "\u5df2\u62f7\u8c9d", "clipboard.copy": "\u62f7\u8c9d", "search.result.more.one": "\u6b64\u9801\u5c1a\u6709 1 \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.more.other": "\u6b64\u9801\u5c1a\u6709 # \u500b\u7b26\u5408\u7684\u9805\u76ee", "search.result.none": "\u6c92\u6709\u627e\u5230\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.other": "\u627e\u5230 # \u500b\u7b26\u5408\u689d\u4ef6\u7684\u7d50\u679c", "search.result.placeholder": "\u9375\u5165\u4ee5\u958b\u59cb\u6aa2\u7d22", "search.result.term.missing": "\u7f3a\u5931", "select.version": "\u9078\u64c7\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>