You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
10 KiB
10 KiB
comments |
---|
true |
8.3 Top-K 问题
!!! question
给定一个长度为 $n$ 无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
8.3.1 方法一:遍历选择
我们可以进行图 8-6 所示的 k
轮遍历,分别在每轮中提取第 1
、2
、\dots
、k
大的元素,时间复杂度为 O(nk)
。
此方法只适用于 k \ll n
的情况,因为当 k
与 n
比较接近时,其时间复杂度趋向于 O(n^2)
,非常耗时。
图 8-6 遍历寻找最大的 k 个元素
!!! tip
当 $k = n$ 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
8.3.2 方法二:排序
如图 8-7 所示,我们可以先对数组 nums
进行排序,再返回最右边的 k
个元素,时间复杂度为 O(n \log n)
。
显然,该方法“超额”完成任务了,因为我们只需要找出最大的 k
个元素即可,而不需要排序其他元素。
图 8-7 排序寻找最大的 k 个元素
8.3.3 方法三:堆
我们可以基于堆更加高效地解决 Top-K 问题,流程如图 8-8 所示。
- 初始化一个小顶堆,其堆顶元素最小。
- 先将数组的前
k
个元素依次入堆。 - 从第
k + 1
个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。 - 遍历完成后,堆中保存的就是最大的
k
个元素。
图 8-8 基于堆寻找最大的 k 个元素
总共执行了 n
轮入堆和出堆,堆的最大长度为 k
,因此时间复杂度为 O(n \log k)
。该方法的效率很高,当 k
较小时,时间复杂度趋向 O(n)
;当 k
较大时,时间复杂度不会超过 O(n \log n)
。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 k
个元素的动态更新。
=== "Python"
```python title="top_k.py"
def top_k_heap(nums: list[int], k: int) -> list[int]:
"""基于堆查找数组中最大的 k 个元素"""
heap = []
# 将数组的前 k 个元素入堆
for i in range(k):
heapq.heappush(heap, nums[i])
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in range(k, len(nums)):
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap[0]:
heapq.heappop(heap)
heapq.heappush(heap, nums[i])
return heap
```
=== "C++"
```cpp title="top_k.cpp"
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
priority_queue<int, vector<int>, greater<int>> heap;
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.push(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.size(); i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
```
=== "Java"
```java title="top_k.java"
/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
Queue<Integer> heap = new PriorityQueue<Integer>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.offer(nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.poll();
heap.offer(nums[i]);
}
}
return heap;
}
```
=== "C#"
```csharp title="top_k.cs"
/* 基于堆查找数组中最大的 k 个元素 */
PriorityQueue<int, int> topKHeap(int[] nums, int k) {
PriorityQueue<int, int> heap = new PriorityQueue<int, int>();
// 将数组的前 k 个元素入堆
for (int i = 0; i < k; i++) {
heap.Enqueue(nums[i], nums[i]);
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.Length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.Peek()) {
heap.Dequeue();
heap.Enqueue(nums[i], nums[i]);
}
}
return heap;
}
```
=== "Go"
```go title="top_k.go"
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums []int, k int) *minHeap {
h := &minHeap{}
heap.Init(h)
// 将数组的前 k 个元素入堆
for i := 0; i < k; i++ {
heap.Push(h, nums[i])
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for i := k; i < len(nums); i++ {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > h.Top().(int) {
heap.Pop(h)
heap.Push(h, nums[i])
}
}
return h
}
```
=== "Swift"
```swift title="top_k.swift"
/* 基于堆查找数组中最大的 k 个元素 */
func topKHeap(nums: [Int], k: Int) -> [Int] {
// 将数组的前 k 个元素入堆
var heap = Array(nums.prefix(k))
// 从第 k+1 个元素开始,保持堆的长度为 k
for i in stride(from: k, to: nums.count, by: 1) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > heap.first! {
heap.removeFirst()
heap.insert(nums[i], at: 0)
}
}
return heap
}
```
=== "JS"
```javascript title="top_k.js"
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums, k) {
// 使用大顶堆 MaxHeap,对数组 nums 取相反数
const invertedNums = nums.map((num) => -num);
// 将数组的前 k 个元素入堆
const heap = new MaxHeap(invertedNums.slice(0, k));
// 从第 k+1 个元素开始,保持堆的长度为 k
for (let i = k; i < invertedNums.length; i++) {
// 若当前元素小于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (invertedNums[i] < heap.peek()) {
heap.pop();
heap.push(invertedNums[i]);
}
}
// 取出堆中元素
const maxHeap = heap.getMaxHeap();
// 对堆中元素取相反数
const invertedMaxHeap = maxHeap.map((num) => -num);
return invertedMaxHeap;
}
```
=== "TS"
```typescript title="top_k.ts"
/* 基于堆查找数组中最大的 k 个元素 */
function topKHeap(nums: number[], k: number): number[] {
// 将堆中所有元素取反,从而用大顶堆来模拟小顶堆
const invertedNums = nums.map((num) => -num);
// 将数组的前 k 个元素入堆
const heap = new MaxHeap(invertedNums.slice(0, k));
// 从第 k+1 个元素开始,保持堆的长度为 k
for (let i = k; i < invertedNums.length; i++) {
// 若当前元素小于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (invertedNums[i] < heap.peek()) {
heap.pop();
heap.push(invertedNums[i]);
}
}
// 取出堆中元素
const maxHeap = heap.getMaxHeap();
// 对堆中元素取相反数
const invertedMaxHeap = maxHeap.map((num) => -num);
return invertedMaxHeap;
}
```
=== "Dart"
```dart title="top_k.dart"
/* 基于堆查找数组中最大的 k 个元素 */
MinHeap topKHeap(List<int> nums, int k) {
// 将数组的前 k 个元素入堆
MinHeap heap = MinHeap(nums.sublist(0, k));
// 从第 k+1 个元素开始,保持堆的长度为 k
for (int i = k; i < nums.length; i++) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if (nums[i] > heap.peek()) {
heap.pop();
heap.push(nums[i]);
}
}
return heap;
}
```
=== "Rust"
```rust title="top_k.rs"
/* 基于堆查找数组中最大的 k 个元素 */
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
// Rust 的 BinaryHeap 是大顶堆,使用 Reverse 将元素大小反转
let mut heap = BinaryHeap::<Reverse<i32>>::new();
// 将数组的前 k 个元素入堆
for &num in nums.iter().take(k) {
heap.push(Reverse(num));
}
// 从第 k+1 个元素开始,保持堆的长度为 k
for &num in nums.iter().skip(k) {
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if num > heap.peek().unwrap().0 {
heap.pop();
heap.push(Reverse(num));
}
}
heap
}
```
=== "C"
```c title="top_k.c"
[class]{}-[func]{topKHeap}
```
=== "Zig"
```zig title="top_k.zig"
[class]{}-[func]{topKHeap}
```