You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/c/chapter_tree/binary_search_tree.c

172 lines
4.5 KiB

/**
* File: binary_search_tree.c
* Created Time: 2023-01-11
* Author: Reanon (793584285@qq.com)
*/
#include "../utils/common.h"
/* 二叉搜索树结构体 */
typedef struct {
TreeNode *root;
} BinarySearchTree;
/* 构造函数 */
BinarySearchTree *newBinarySearchTree() {
// 初始化空树
BinarySearchTree *bst = (BinarySearchTree *)malloc(sizeof(BinarySearchTree));
bst->root = NULL;
return bst;
}
/* 析构函数 */
void delBinarySearchTree(BinarySearchTree *bst) {
freeMemoryTree(bst->root);
free(bst);
}
/* 获取二叉树根节点 */
TreeNode *getRoot(BinarySearchTree *bst) {
return bst->root;
}
/* 查找节点 */
TreeNode *search(BinarySearchTree *bst, int num) {
TreeNode *cur = bst->root;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
if (cur->val < num) {
// 目标节点在 cur 的右子树中
cur = cur->right;
} else if (cur->val > num) {
// 目标节点在 cur 的左子树中
cur = cur->left;
} else {
// 找到目标节点,跳出循环
break;
}
}
// 返回目标节点
return cur;
}
/* 插入节点 */
void insert(BinarySearchTree *bst, int num) {
// 若树为空,则初始化根节点
if (bst->root == NULL) {
bst->root = newTreeNode(num);
return;
}
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
// 找到重复节点,直接返回
if (cur->val == num) {
return;
}
pre = cur;
if (cur->val < num) {
// 插入位置在 cur 的右子树中
cur = cur->right;
} else {
// 插入位置在 cur 的左子树中
cur = cur->left;
}
}
// 插入节点
TreeNode *node = newTreeNode(num);
if (pre->val < num) {
pre->right = node;
} else {
pre->left = node;
}
}
/* 删除节点 */
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
void removeItem(BinarySearchTree *bst, int num) {
// 若树为空,直接提前返回
if (bst->root == NULL)
return;
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
while (cur != NULL) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
pre = cur;
if (cur->val < num) {
// 待删除节点在 root 的右子树中
cur = cur->right;
} else {
// 待删除节点在 root 的左子树中
cur = cur->left;
}
}
// 若无待删除节点,则直接返回
if (cur == NULL)
return;
// 判断待删除节点是否存在子节点
if (cur->left == NULL || cur->right == NULL) {
/* 子节点数量 = 0 or 1 */
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
TreeNode *child = cur->left != NULL ? cur->left : cur->right;
// 删除节点 cur
if (pre->left == cur) {
pre->left = child;
} else {
pre->right = child;
}
// 释放内存
free(cur);
} else {
/* 子节点数量 = 2 */
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != NULL) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
removeItem(bst, tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
}
}
/* Driver Code */
int main() {
/* 初始化二叉搜索树 */
int nums[] = {8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15};
BinarySearchTree *bst = newBinarySearchTree();
for (int i = 0; i < sizeof(nums) / sizeof(int); i++) {
insert(bst, nums[i]);
}
printf("初始化的二叉树为\n");
printTree(getRoot(bst));
/* 查找节点 */
TreeNode *node = search(bst, 7);
printf("查找到的节点对象的节点值 = %d\n", node->val);
/* 插入节点 */
insert(bst, 16);
printf("插入节点 16 后,二叉树为\n");
printTree(getRoot(bst));
/* 删除节点 */
removeItem(bst, 1);
printf("删除节点 1 后,二叉树为\n");
printTree(getRoot(bst));
removeItem(bst, 2);
printf("删除节点 2 后,二叉树为\n");
printTree(getRoot(bst));
removeItem(bst, 4);
printf("删除节点 4 后,二叉树为\n");
printTree(getRoot(bst));
// 释放内存
delBinarySearchTree(bst);
return 0;
}