You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_divide_and_conquer/hanota_problem.md

25 KiB

comments
true

12.4   汉诺塔问题

在归并排序和构建二叉树中,我们都是将原问题分解为两个规模为原问题一半的子问题。然而对于汉诺塔问题,我们采用不同的分解策略。

!!! question

给定三根柱子,记为 `A`、`B` 和 `C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变(如图 12-10 所示)。在移动圆盘的过程中,需要遵守以下规则。

1. 圆盘只能从一根柱子顶部拿出,从另一根柱子顶部放入。
2. 每次只能移动一个圆盘。
3. 小圆盘必须时刻位于大圆盘之上。

汉诺塔问题示例{ class="animation-figure" }

图 12-10   汉诺塔问题示例

我们将规模为 i 的汉诺塔问题记作 f(i) 。例如 f(3) 代表将 3 个圆盘从 A 移动至 C 的汉诺塔问题。

1.   考虑基本情况

如图 12-11 所示,对于问题 f(1) ,即当只有一个圆盘时,我们将它直接从 A 移动至 C 即可。

=== "<1>" 规模为 1 的问题的解{ class="animation-figure" }

=== "<2>" hanota_f1_step2{ class="animation-figure" }

图 12-11   规模为 1 的问题的解

如图 12-12 所示,对于问题 f(2) ,即当有两个圆盘时,由于要时刻满足小圆盘在大圆盘之上,因此需要借助 B 来完成移动

  1. 先将上面的小圆盘从 A 移至 B
  2. 再将大圆盘从 A 移至 C
  3. 最后将小圆盘从 B 移至 C

=== "<1>" 规模为 2 的问题的解{ class="animation-figure" }

=== "<2>" hanota_f2_step2{ class="animation-figure" }

=== "<3>" hanota_f2_step3{ class="animation-figure" }

=== "<4>" hanota_f2_step4{ class="animation-figure" }

图 12-12   规模为 2 的问题的解

解决问题 f(2) 的过程可总结为:将两个圆盘借助 BA 移至 C 。其中,C 称为目标柱、B 称为缓冲柱。

2.   子问题分解

对于问题 f(3) ,即当有三个圆盘时,情况变得稍微复杂了一些。

因为已知 f(1)f(2) 的解,所以我们可从分治角度思考,A 顶部的两个圆盘看作一个整体,执行图 12-13 所示的步骤。这样三个圆盘就被顺利地从 A 移至 C 了。

  1. B 为目标柱、C 为缓冲柱,将两个圆盘从 A 移至 B
  2. A 中剩余的一个圆盘从 A 直接移动至 C
  3. C 为目标柱、A 为缓冲柱,将两个圆盘从 B 移至 C

=== "<1>" 规模为 3 的问题的解{ class="animation-figure" }

=== "<2>" hanota_f3_step2{ class="animation-figure" }

=== "<3>" hanota_f3_step3{ class="animation-figure" }

=== "<4>" hanota_f3_step4{ class="animation-figure" }

图 12-13   规模为 3 的问题的解

从本质上看,我们将问题 f(3) 划分为两个子问题 f(2) 和一个子问题 f(1) 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解可以合并。

至此,我们可总结出图 12-14 所示的解决汉诺塔问题的分治策略:将原问题 f(n) 划分为两个子问题 f(n-1) 和一个子问题 f(1) ,并按照以下顺序解决这三个子问题。

  1. n-1 个圆盘借助 CA 移至 B
  2. 将剩余 1 个圆盘从 A 直接移至 C
  3. n-1 个圆盘借助 AB 移至 C

对于这两个子问题 f(n-1) 可以通过相同的方式进行递归划分,直至达到最小子问题 f(1) 。而 f(1) 的解是已知的,只需一次移动操作即可。

解决汉诺塔问题的分治策略{ class="animation-figure" }

图 12-14   解决汉诺塔问题的分治策略

3.   代码实现

在代码中,我们声明一个递归函数 dfs(i, src, buf, tar) ,它的作用是将柱 src 顶部的 i 个圆盘借助缓冲柱 buf 移动至目标柱 tar

=== "Python"

```python title="hanota.py"
def move(src: list[int], tar: list[int]):
    """移动一个圆盘"""
    # 从 src 顶部拿出一个圆盘
    pan = src.pop()
    # 将圆盘放入 tar 顶部
    tar.append(pan)

def dfs(i: int, src: list[int], buf: list[int], tar: list[int]):
    """求解汉诺塔问题 f(i)"""
    # 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1:
        move(src, tar)
        return
    # 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf)
    # 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar)
    # 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar)

def solve_hanota(A: list[int], B: list[int], C: list[int]):
    """求解汉诺塔问题"""
    n = len(A)
    # 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C)
```

=== "C++"

```cpp title="hanota.cpp"
/* 移动一个圆盘 */
void move(vector<int> &src, vector<int> &tar) {
    // 从 src 顶部拿出一个圆盘
    int pan = src.back();
    src.pop_back();
    // 将圆盘放入 tar 顶部
    tar.push_back(pan);
}

/* 求解汉诺塔问题 f(i) */
void dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
void solveHanota(vector<int> &A, vector<int> &B, vector<int> &C) {
    int n = A.size();
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
```

=== "Java"

```java title="hanota.java"
/* 移动一个圆盘 */
void move(List<Integer> src, List<Integer> tar) {
    // 从 src 顶部拿出一个圆盘
    Integer pan = src.remove(src.size() - 1);
    // 将圆盘放入 tar 顶部
    tar.add(pan);
}

/* 求解汉诺塔问题 f(i) */
void dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
void solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {
    int n = A.size();
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
```

=== "C#"

```csharp title="hanota.cs"
/* 移动一个圆盘 */
void Move(List<int> src, List<int> tar) {
    // 从 src 顶部拿出一个圆盘
    int pan = src[^1];
    src.RemoveAt(src.Count - 1);
    // 将圆盘放入 tar 顶部
    tar.Add(pan);
}

/* 求解汉诺塔问题 f(i) */
void DFS(int i, List<int> src, List<int> buf, List<int> tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        Move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    DFS(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    Move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    DFS(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
void SolveHanota(List<int> A, List<int> B, List<int> C) {
    int n = A.Count;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    DFS(n, A, B, C);
}
```

=== "Go"

```go title="hanota.go"
/* 移动一个圆盘 */
func move(src, tar *list.List) {
    // 从 src 顶部拿出一个圆盘
    pan := src.Back()
    // 将圆盘放入 tar 顶部
    tar.PushBack(pan.Value)
    // 移除 src 顶部圆盘
    src.Remove(pan)
}

/* 求解汉诺塔问题 f(i) */
func dfsHanota(i int, src, buf, tar *list.List) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move(src, tar)
        return
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfsHanota(i-1, src, tar, buf)
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar)
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfsHanota(i-1, buf, src, tar)
}

/* 求解汉诺塔问题 */
func solveHanota(A, B, C *list.List) {
    n := A.Len()
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfsHanota(n, A, B, C)
}
```

=== "Swift"

```swift title="hanota.swift"
/* 移动一个圆盘 */
func move(src: inout [Int], tar: inout [Int]) {
    // 从 src 顶部拿出一个圆盘
    let pan = src.popLast()!
    // 将圆盘放入 tar 顶部
    tar.append(pan)
}

/* 求解汉诺塔问题 f(i) */
func dfs(i: Int, src: inout [Int], buf: inout [Int], tar: inout [Int]) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move(src: &src, tar: &tar)
        return
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i: i - 1, src: &src, buf: &tar, tar: &buf)
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src: &src, tar: &tar)
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i: i - 1, src: &buf, buf: &src, tar: &tar)
}

/* 求解汉诺塔问题 */
func solveHanota(A: inout [Int], B: inout [Int], C: inout [Int]) {
    let n = A.count
    // 列表尾部是柱子顶部
    // 将 src 顶部 n 个圆盘借助 B 移到 C
    dfs(i: n, src: &A, buf: &B, tar: &C)
}
```

=== "JS"

```javascript title="hanota.js"
/* 移动一个圆盘 */
function move(src, tar) {
    // 从 src 顶部拿出一个圆盘
    const pan = src.pop();
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔问题 f(i) */
function dfs(i, src, buf, tar) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i === 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
function solveHanota(A, B, C) {
    const n = A.length;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
```

=== "TS"

```typescript title="hanota.ts"
/* 移动一个圆盘 */
function move(src: number[], tar: number[]): void {
    // 从 src 顶部拿出一个圆盘
    const pan = src.pop();
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔问题 f(i) */
function dfs(i: number, src: number[], buf: number[], tar: number[]): void {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i === 1) {
        move(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
function solveHanota(A: number[], B: number[], C: number[]): void {
    const n = A.length;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
```

=== "Dart"

```dart title="hanota.dart"
/* 移动一个圆盘 */
void move(List<int> src, List<int> tar) {
  // 从 src 顶部拿出一个圆盘
  int pan = src.removeLast();
  // 将圆盘放入 tar 顶部
  tar.add(pan);
}

/* 求解汉诺塔问题 f(i) */
void dfs(int i, List<int> src, List<int> buf, List<int> tar) {
  // 若 src 只剩下一个圆盘,则直接将其移到 tar
  if (i == 1) {
    move(src, tar);
    return;
  }
  // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
  dfs(i - 1, src, tar, buf);
  // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
  move(src, tar);
  // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
  dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
void solveHanota(List<int> A, List<int> B, List<int> C) {
  int n = A.length;
  // 将 A 顶部 n 个圆盘借助 B 移到 C
  dfs(n, A, B, C);
}
```

=== "Rust"

```rust title="hanota.rs"
/* 移动一个圆盘 */
fn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {
    // 从 src 顶部拿出一个圆盘
    let pan = src.remove(src.len() - 1);
    // 将圆盘放入 tar 顶部
    tar.push(pan);
}

/* 求解汉诺塔问题 f(i) */
fn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if i == 1 {
        move_pan(src, tar);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move_pan(src, tar);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar);
}

/* 求解汉诺塔问题 */
fn solve_hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {
    let n = A.len() as i32;
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C);
}
```

=== "C"

```c title="hanota.c"
/* 移动一个圆盘 */
void move(int *src, int *srcSize, int *tar, int *tarSize) {
    // 从 src 顶部拿出一个圆盘
    int pan = src[*srcSize - 1];
    src[*srcSize - 1] = 0;
    (*srcSize)--;
    // 将圆盘放入 tar 顶部
    tar[*tarSize] = pan;
    (*tarSize)++;
}

/* 求解汉诺塔问题 f(i) */
void dfs(int i, int *src, int *srcSize, int *buf, int *bufSize, int *tar, int *tarSize) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, srcSize, tar, tarSize);
        return;
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, srcSize, tar, tarSize, buf, bufSize);
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, srcSize, tar, tarSize);
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, bufSize, src, srcSize, tar, tarSize);
}

/* 求解汉诺塔问题 */
void solveHanota(int *A, int *ASize, int *B, int *BSize, int *C, int *CSize) {
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(*ASize, A, ASize, B, BSize, C, CSize);
}
```

=== "Kotlin"

```kotlin title="hanota.kt"
/* 移动一个圆盘 */
fun move(src: MutableList<Int>, tar: MutableList<Int>) {
    // 从 src 顶部拿出一个圆盘
    val pan: Int = src.removeAt(src.size - 1)
    // 将圆盘放入 tar 顶部
    tar.add(pan)
}

/* 求解汉诺塔问题 f(i) */
fun dfs(i: Int, src: MutableList<Int>, buf: MutableList<Int>, tar: MutableList<Int>) {
    // 若 src 只剩下一个圆盘,则直接将其移到 tar
    if (i == 1) {
        move(src, tar)
        return
    }
    // 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
    dfs(i - 1, src, tar, buf)
    // 子问题 f(1) :将 src 剩余一个圆盘移到 tar
    move(src, tar)
    // 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
    dfs(i - 1, buf, src, tar)
}

/* 求解汉诺塔问题 */
fun solveHanota(A: MutableList<Int>, B: MutableList<Int>, C: MutableList<Int>) {
    val n = A.size
    // 将 A 顶部 n 个圆盘借助 B 移到 C
    dfs(n, A, B, C)
}
```

=== "Zig"

```zig title="hanota.zig"
[class]{}-[func]{move}

[class]{}-[func]{dfs}

[class]{}-[func]{solveHanota}
```

??? pythontutor "可视化运行"

<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20move%28src%3A%20list%5Bint%5D,%20tar%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E7%A7%BB%E5%8A%A8%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%22%22%22%0A%20%20%20%20%23%20%E4%BB%8E%20src%20%E9%A1%B6%E9%83%A8%E6%8B%BF%E5%87%BA%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%0A%20%20%20%20pan%20%3D%20src.pop%28%29%0A%20%20%20%20%23%20%E5%B0%86%E5%9C%86%E7%9B%98%E6%94%BE%E5%85%A5%20tar%20%E9%A1%B6%E9%83%A8%0A%20%20%20%20tar.append%28pan%29%0A%0A%0Adef%20dfs%28i%3A%20int,%20src%3A%20list%5Bint%5D,%20buf%3A%20list%5Bint%5D,%20tar%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E6%B1%89%E8%AF%BA%E5%A1%94%E9%97%AE%E9%A2%98%20f%28i%29%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%20src%20%E5%8F%AA%E5%89%A9%E4%B8%8B%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E5%B0%86%E5%85%B6%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20if%20i%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20move%28src,%20tar%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i-1%29%20%EF%BC%9A%E5%B0%86%20src%20%E9%A1%B6%E9%83%A8%20i-1%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20tar%20%E7%A7%BB%E5%88%B0%20buf%0A%20%20%20%20dfs%28i%20-%201,%20src,%20tar,%20buf%29%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%281%29%20%EF%BC%9A%E5%B0%86%20src%20%E5%89%A9%E4%BD%99%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20move%28src,%20tar%29%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i-1%29%20%EF%BC%9A%E5%B0%86%20buf%20%E9%A1%B6%E9%83%A8%20i-1%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20src%20%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20dfs%28i%20-%201,%20buf,%20src,%20tar%29%0A%0A%0Adef%20solve_hanota%28A%3A%20list%5Bint%5D,%20B%3A%20list%5Bint%5D,%20C%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E6%B1%89%E8%AF%BA%E5%A1%94%E9%97%AE%E9%A2%98%22%22%22%0A%20%20%20%20n%20%3D%20len%28A%29%0A%20%20%20%20%23%20%E5%B0%86%20A%20%E9%A1%B6%E9%83%A8%20n%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20B%20%E7%A7%BB%E5%88%B0%20C%0A%20%20%20%20dfs%28n,%20A,%20B,%20C%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%97%E8%A1%A8%E5%B0%BE%E9%83%A8%E6%98%AF%E6%9F%B1%E5%AD%90%E9%A1%B6%E9%83%A8%0A%20%20%20%20A%20%3D%20%5B5,%204,%203,%202,%201%5D%0A%20%20%20%20B%20%3D%20%5B%5D%0A%20%20%20%20C%20%3D%20%5B%5D%0A%20%20%20%20print%28%22%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%E4%B8%8B%EF%BC%9A%22%29%0A%20%20%20%20print%28f%22A%20%3D%20%7BA%7D%22%29%0A%20%20%20%20print%28f%22B%20%3D%20%7BB%7D%22%29%0A%20%20%20%20print%28f%22C%20%3D%20%7BC%7D%22%29%0A%0A%20%20%20%20solve_hanota%28A,%20B,%20C%29%0A%0A%20%20%20%20print%28%22%E5%9C%86%E7%9B%98%E7%A7%BB%E5%8A%A8%E5%AE%8C%E6%88%90%E5%90%8E%EF%BC%9A%22%29%0A%20%20%20%20print%28f%22A%20%3D%20%7BA%7D%22%29%0A%20%20%20%20print%28f%22B%20%3D%20%7BB%7D%22%29%0A%20%20%20%20print%28f%22C%20%3D%20%7BC%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=12&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20move%28src%3A%20list%5Bint%5D,%20tar%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E7%A7%BB%E5%8A%A8%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%22%22%22%0A%20%20%20%20%23%20%E4%BB%8E%20src%20%E9%A1%B6%E9%83%A8%E6%8B%BF%E5%87%BA%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%0A%20%20%20%20pan%20%3D%20src.pop%28%29%0A%20%20%20%20%23%20%E5%B0%86%E5%9C%86%E7%9B%98%E6%94%BE%E5%85%A5%20tar%20%E9%A1%B6%E9%83%A8%0A%20%20%20%20tar.append%28pan%29%0A%0A%0Adef%20dfs%28i%3A%20int,%20src%3A%20list%5Bint%5D,%20buf%3A%20list%5Bint%5D,%20tar%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E6%B1%89%E8%AF%BA%E5%A1%94%E9%97%AE%E9%A2%98%20f%28i%29%22%22%22%0A%20%20%20%20%23%20%E8%8B%A5%20src%20%E5%8F%AA%E5%89%A9%E4%B8%8B%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E5%B0%86%E5%85%B6%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20if%20i%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20move%28src,%20tar%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i-1%29%20%EF%BC%9A%E5%B0%86%20src%20%E9%A1%B6%E9%83%A8%20i-1%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20tar%20%E7%A7%BB%E5%88%B0%20buf%0A%20%20%20%20dfs%28i%20-%201,%20src,%20tar,%20buf%29%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%281%29%20%EF%BC%9A%E5%B0%86%20src%20%E5%89%A9%E4%BD%99%E4%B8%80%E4%B8%AA%E5%9C%86%E7%9B%98%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20move%28src,%20tar%29%0A%20%20%20%20%23%20%E5%AD%90%E9%97%AE%E9%A2%98%20f%28i-1%29%20%EF%BC%9A%E5%B0%86%20buf%20%E9%A1%B6%E9%83%A8%20i-1%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20src%20%E7%A7%BB%E5%88%B0%20tar%0A%20%20%20%20dfs%28i%20-%201,%20buf,%20src,%20tar%29%0A%0A%0Adef%20solve_hanota%28A%3A%20list%5Bint%5D,%20B%3A%20list%5Bint%5D,%20C%3A%20list%5Bint%5D%29%3A%0A%20%20%20%20%22%22%22%E6%B1%82%E8%A7%A3%E6%B1%89%E8%AF%BA%E5%A1%94%E9%97%AE%E9%A2%98%22%22%22%0A%20%20%20%20n%20%3D%20len%28A%29%0A%20%20%20%20%23%20%E5%B0%86%20A%20%E9%A1%B6%E9%83%A8%20n%20%E4%B8%AA%E5%9C%86%E7%9B%98%E5%80%9F%E5%8A%A9%20B%20%E7%A7%BB%E5%88%B0%20C%0A%20%20%20%20dfs%28n,%20A,%20B,%20C%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%97%E8%A1%A8%E5%B0%BE%E9%83%A8%E6%98%AF%E6%9F%B1%E5%AD%90%E9%A1%B6%E9%83%A8%0A%20%20%20%20A%20%3D%20%5B5,%204,%203,%202,%201%5D%0A%20%20%20%20B%20%3D%20%5B%5D%0A%20%20%20%20C%20%3D%20%5B%5D%0A%20%20%20%20print%28%22%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%E4%B8%8B%EF%BC%9A%22%29%0A%20%20%20%20print%28f%22A%20%3D%20%7BA%7D%22%29%0A%20%20%20%20print%28f%22B%20%3D%20%7BB%7D%22%29%0A%20%20%20%20print%28f%22C%20%3D%20%7BC%7D%22%29%0A%0A%20%20%20%20solve_hanota%28A,%20B,%20C%29%0A%0A%20%20%20%20print%28%22%E5%9C%86%E7%9B%98%E7%A7%BB%E5%8A%A8%E5%AE%8C%E6%88%90%E5%90%8E%EF%BC%9A%22%29%0A%20%20%20%20print%28f%22A%20%3D%20%7BA%7D%22%29%0A%20%20%20%20print%28f%22B%20%3D%20%7BB%7D%22%29%0A%20%20%20%20print%28f%22C%20%3D%20%7BC%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=12&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>

如图 12-15 所示,汉诺塔问题形成一棵高度为 n 的递归树,每个节点代表一个子问题,对应一个开启的 dfs() 函数,因此时间复杂度为 O(2^n) ,空间复杂度为 O(n)

汉诺塔问题的递归树{ class="animation-figure" }

图 12-15   汉诺塔问题的递归树

!!! quote

汉诺塔问题源自一个古老的传说。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 $64$ 个大小不一的金圆盘。僧侣们不断地移动圆盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。

然而,即使僧侣们每秒钟移动一次,总共需要大约 $2^{64} \approx 1.84×10^{19}$ 秒,合约 $5850$ 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。