You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_dynamic_programming/dp_solution_pipeline/index.html

3014 lines
186 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_dynamic_programming/dp_solution_pipeline/">
<link rel="prev" href="../dp_problem_features/">
<link rel="next" href="../knapsack_problem/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.1.11">
<title>13.3.   DP 解题思路New - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.85bb2934.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.a6bdf11c.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#133" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
13.3. &nbsp; DP 解题思路New
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_preface/">0. &nbsp; &nbsp; 前言</a>
<label for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
0. &nbsp; &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
0.1. &nbsp; 关于本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
0.2. &nbsp; 如何使用本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
0.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_introduction/">1. &nbsp; &nbsp; 初识算法</a>
<label for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
1. &nbsp; &nbsp; 初识算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
1.1. &nbsp; 算法无处不在
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
1.2. &nbsp; 算法是什么
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
1.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_computational_complexity/">2. &nbsp; &nbsp; 复杂度</a>
<label for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
2. &nbsp; &nbsp; 复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
2.1. &nbsp; 算法效率评估
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
2.2. &nbsp; 时间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
2.3. &nbsp; 空间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
2.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_data_structure/">3. &nbsp; &nbsp; 数据结构</a>
<label for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
3. &nbsp; &nbsp; 数据结构
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
3.1. &nbsp; 数据结构分类
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
3.2. &nbsp; 基本数据类型
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
3.3. &nbsp; 数字编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
3.4. &nbsp; 字符编码 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
3.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_array_and_linkedlist/">4. &nbsp; &nbsp; 数组与链表</a>
<label for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
4. &nbsp; &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
4.1. &nbsp; 数组
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
4.2. &nbsp; 链表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
4.3. &nbsp; 列表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
4.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_stack_and_queue/">5. &nbsp; &nbsp; 栈与队列</a>
<label for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
5. &nbsp; &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
5.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
5.2. &nbsp; 队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
5.3. &nbsp; 双向队列
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
5.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_hashing/">6. &nbsp; &nbsp; 散列表</a>
<label for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
6.1. &nbsp; 哈希表New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
6.2. &nbsp; 哈希冲突New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
6.3. &nbsp; 哈希算法New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
6.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_tree/">7. &nbsp; &nbsp;</a>
<label for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
7.1. &nbsp; 二叉树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
7.2. &nbsp; 二叉树遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
7.3. &nbsp; 二叉树数组表示
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
7.4. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
7.5. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
7.6. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_heap/">8. &nbsp; &nbsp;</a>
<label for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
8.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
8.2. &nbsp; 建堆操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
8.3. &nbsp; Top-K 问题New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
8.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_graph/">9. &nbsp; &nbsp;</a>
<label for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
9.1. &nbsp;
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
9.2. &nbsp; 图基础操作
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
9.3. &nbsp; 图的遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
9.4. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_searching/">10. &nbsp; &nbsp; 搜索</a>
<label for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
10.1. &nbsp; 二分查找
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
10.2. &nbsp; 二分查找边界
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
10.3. &nbsp; 哈希优化策略
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
10.4. &nbsp; 重识搜索算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
10.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_sorting/">11. &nbsp; &nbsp; 排序</a>
<label for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
11. &nbsp; &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
11.1. &nbsp; 排序算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
11.2. &nbsp; 选择排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
11.3. &nbsp; 冒泡排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
11.4. &nbsp; 插入排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
11.5. &nbsp; 快速排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
11.6. &nbsp; 归并排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
11.7. &nbsp; 堆排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
11.8. &nbsp; 桶排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
11.9. &nbsp; 计数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
11.10. &nbsp; 基数排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
11.11. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_backtracking/">12. &nbsp; &nbsp; 回溯</a>
<label for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
12.1. &nbsp; 回溯算法
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
12.2. &nbsp; 全排列问题
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
12.3. &nbsp; 子集和问题New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
12.4. &nbsp; N 皇后问题
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
12.5. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" checked>
<div class="md-nav__link md-nav__link--index ">
<a href="../">13. &nbsp; &nbsp; 动态规划</a>
<label for="__nav_14">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; &nbsp; 动态规划
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../intro_to_dynamic_programming/" class="md-nav__link">
13.1. &nbsp; 初探动态规划New
</a>
</li>
<li class="md-nav__item">
<a href="../dp_problem_features/" class="md-nav__link">
13.2. &nbsp; DP 问题特性New
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
13.3. &nbsp; DP 解题思路New
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
13.3. &nbsp; DP 解题思路New
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1331" class="md-nav__link">
13.3.1. &nbsp; 问题判断
</a>
</li>
<li class="md-nav__item">
<a href="#1332" class="md-nav__link">
13.3.2. &nbsp; 问题求解
</a>
</li>
<li class="md-nav__item">
<a href="#1333" class="md-nav__link">
13.3.3. &nbsp; 方法一:暴力搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1334" class="md-nav__link">
13.3.4. &nbsp; 方法二:记忆化搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1335" class="md-nav__link">
13.3.5. &nbsp; 方法三:动态规划
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../knapsack_problem/" class="md-nav__link">
13.4. &nbsp; 0-1 背包问题New
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<label class="md-nav__link" for="__nav_15" id="__nav_15_label" tabindex="0">
14. &nbsp; &nbsp; 附录
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
14. &nbsp; &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
14.1. &nbsp; 编程环境安装
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
14.2. &nbsp; 一起参与创作
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_reference/">参考文献</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1331" class="md-nav__link">
13.3.1. &nbsp; 问题判断
</a>
</li>
<li class="md-nav__item">
<a href="#1332" class="md-nav__link">
13.3.2. &nbsp; 问题求解
</a>
</li>
<li class="md-nav__item">
<a href="#1333" class="md-nav__link">
13.3.3. &nbsp; 方法一:暴力搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1334" class="md-nav__link">
13.3.4. &nbsp; 方法二:记忆化搜索
</a>
</li>
<li class="md-nav__item">
<a href="#1335" class="md-nav__link">
13.3.5. &nbsp; 方法三:动态规划
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_dynamic_programming/dp_solution_pipeline.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<h1 id="133">13.3. &nbsp; 动态规划解题思路<a class="headerlink" href="#133" title="Permanent link">&para;</a></h1>
<p>上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题:</p>
<ol>
<li>如何判断一个问题是不是动态规划问题?</li>
<li>求解动态规划问题该从何处入手,完整步骤是什么?</li>
</ol>
<h2 id="1331">13.3.1. &nbsp; 问题判断<a class="headerlink" href="#1331" title="Permanent link">&para;</a></h2>
<p>总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解,但我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,<strong>先观察问题是否适合使用回溯(穷举)解决</strong></p>
<p><strong>适合用回溯解决的问题通常满足“决策树模型”</strong>,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。</p>
<p>换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。</p>
<p>在此基础上,还有一些判断问题是动态规划问题的“加分项”,包括:</p>
<ul>
<li>问题包含最大(小)或最多(少)等最优化描述;</li>
<li>问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在某种递推关系;</li>
</ul>
<p>而相应的“减分项”包括:</p>
<ul>
<li>问题的目标是找出所有可能的解决方案,而不是找出最优解。</li>
<li>问题描述中有明显的排列组合的特征,需要返回具体的多个方案。</li>
</ul>
<p>如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并尝试求解它。</p>
<h2 id="1332">13.3.2. &nbsp; 问题求解<a class="headerlink" href="#1332" title="Permanent link">&para;</a></h2>
<p>动态规划的解题流程可能会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 <span class="arithmatex">\(dp\)</span> 表,推导状态转移方程,确定边界条件等。</p>
<p>为了更形象地展示解题步骤,我们使用一个经典问题「最小路径和」来举例。</p>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>给定一个 <span class="arithmatex">\(n \times m\)</span> 的二维网格 <code>grid</code> ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。</p>
</div>
<p>例如以下示例数据,给定网格的最小路径和为 <span class="arithmatex">\(13\)</span></p>
<p><img alt="最小路径和示例数据" src="../dp_solution_pipeline.assets/min_path_sum_example.png" /></p>
<p align="center"> Fig. 最小路径和示例数据 </p>
<p><strong>第一步:思考每轮的决策,定义状态,从而得到 <span class="arithmatex">\(dp\)</span></strong></p>
<p>本题的每一轮的决策就是从当前格子向下或向右一步。设当前格子的行列索引为 <span class="arithmatex">\([i, j]\)</span> ,则向下或向右走一步后,索引变为 <span class="arithmatex">\([i+1, j]\)</span><span class="arithmatex">\([i, j+1]\)</span> 。因此,状态应包含行索引和列索引两个变量,记为 <span class="arithmatex">\([i, j]\)</span></p>
<p>状态 <span class="arithmatex">\([i, j]\)</span> 对应的子问题为:从起始点 <span class="arithmatex">\([0, 0]\)</span> 走到 <span class="arithmatex">\([i, j]\)</span> 的最小路径和,解记为 <span class="arithmatex">\(dp[i, j]\)</span></p>
<p>至此,我们就得到了一个二维 <span class="arithmatex">\(dp\)</span> 矩阵,其尺寸与输入网格 <span class="arithmatex">\(grid\)</span> 相同。</p>
<p><img alt="状态定义与 dp 表" src="../dp_solution_pipeline.assets/min_path_sum_solution_step1.png" /></p>
<p align="center"> Fig. 状态定义与 dp 表 </p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>动态规划和回溯通常都会被描述为一个决策序列,而状态通常由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。</p>
<p>每个状态都对应一个子问题,我们会定义一个 <span class="arithmatex">\(dp\)</span> 表来存储所有子问题的解,状态的每个独立变量都是 <span class="arithmatex">\(dp\)</span> 表的一个维度。本质上看,<span class="arithmatex">\(dp\)</span> 表是子问题的解和状态之间的映射。</p>
</div>
<p><strong>第二步:找出最优子结构,进而推导出状态转移方程</strong></p>
<p>对于状态 <span class="arithmatex">\([i, j]\)</span> ,它只能从上边格子 <span class="arithmatex">\([i-1, j]\)</span> 和左边格子 <span class="arithmatex">\([i, j-1]\)</span> 转移而来。因此最优子结构为:到达 <span class="arithmatex">\([i, j]\)</span> 的最小路径和由 <span class="arithmatex">\([i, j-1]\)</span> 的最小路径和与 <span class="arithmatex">\([i-1, j]\)</span> 的最小路径和,这两者较小的那一个决定。</p>
<p>根据以上分析,可推出以下状态转移方程:</p>
<div class="arithmatex">\[
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
\]</div>
<p><img alt="最优子结构与状态转移方程" src="../dp_solution_pipeline.assets/min_path_sum_solution_step2.png" /></p>
<p align="center"> Fig. 最优子结构与状态转移方程 </p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>基于定义好的 <span class="arithmatex">\(dp\)</span> 表,我们思考原问题和子问题的关系,找出如何通过子问题的解来构造原问题的解。</p>
<p>最优子结构揭示了原问题和子问题的递推关系,一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。</p>
</div>
<p><strong>第三步:确定边界条件和状态转移顺序</strong></p>
<p>在本题中,当 <span class="arithmatex">\(i=0\)</span><span class="arithmatex">\(j=0\)</span> 时只有一种可能的路径,即只能向右移动或只能向下移动,因此首行和首列是边界条件。</p>
<p>每个格子是由其左方格子和上方格子转移而来,因此我们使用两层循环来遍历矩阵即可,即外循环正序遍历各行、内循环正序遍历各列。</p>
<p><img alt="边界条件与状态转移顺序" src="../dp_solution_pipeline.assets/min_path_sum_solution_step3.png" /></p>
<p align="center"> Fig. 边界条件与状态转移顺序 </p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>边界条件即初始状态,在搜索中用于剪枝,在动态规划中用于初始化 <span class="arithmatex">\(dp\)</span> 表。状态转移顺序的核心是要保证在计算当前问题时,所有它依赖的更小子问题都已经被正确地计算出来。</p>
</div>
<p>最后,我们基于以上结果实现解法即可。熟练度较高同学可以直接写出动态规划解法,初学者可以按照“暴力搜索 <span class="arithmatex">\(\rightarrow\)</span> 记忆化搜索 <span class="arithmatex">\(\rightarrow\)</span> 动态规划” 的顺序实现。</p>
<h2 id="1333">13.3.3. &nbsp; 方法一:暴力搜索<a class="headerlink" href="#1333" title="Permanent link">&para;</a></h2>
<p>从状态 <span class="arithmatex">\([i, j]\)</span> 开始搜索,不断分解为更小的状态 <span class="arithmatex">\([i-1, j]\)</span><span class="arithmatex">\([i, j-1]\)</span> ,包括以下递归要素:</p>
<ul>
<li><strong>递归参数</strong>:状态 <span class="arithmatex">\([i, j]\)</span> <strong>返回值</strong>:从 <span class="arithmatex">\([0, 0]\)</span><span class="arithmatex">\([i, j]\)</span> 的最小路径和 <span class="arithmatex">\(dp[i, j]\)</span> </li>
<li><strong>终止条件</strong>:当 <span class="arithmatex">\(i = 0\)</span><span class="arithmatex">\(j = 0\)</span> 时,返回代价 <span class="arithmatex">\(grid[0][0]\)</span> </li>
<li><strong>剪枝</strong>:当 <span class="arithmatex">\(i &lt; 0\)</span> 时或 <span class="arithmatex">\(j &lt; 0\)</span> 时索引越界,此时返回代价 <span class="arithmatex">\(+\infty\)</span> ,代表不可行;</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="1:11"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Integer</span><span class="p">.</span><span class="na">MAX_VALUE</span><span class="p">;</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">INT_MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">j</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;最小路径和:暴力搜索&quot;&quot;&quot;</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="c1"># 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">j</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="k">return</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">j</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="k">return</span> <span class="n">inf</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="c1"># 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="n">left</span> <span class="o">=</span> <span class="n">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="n">up</span> <span class="o">=</span> <span class="n">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="c1"># 返回从左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="k">return</span> <span class="nb">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">up</span><span class="p">)</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">){</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kt">int</span><span class="p">.</span><span class="n">MaxValue</span><span class="p">;</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>我们尝试画出以 <span class="arithmatex">\(dp[2, 1]\)</span> 为根节点的递归树。观察下图,递归树包含一些重叠子问题,其数量会随着网格 <code>grid</code> 的尺寸变大而急剧增多。</p>
<p>直观上看,<strong>存在多条路径可以从左上角到达同一单元格</strong>,这便是该问题存在重叠子问题的内在原因。</p>
<p><img alt="暴力搜索递归树" src="../dp_solution_pipeline.assets/min_path_sum_dfs.png" /></p>
<p align="center"> Fig. 暴力搜索递归树 </p>
<p>每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 <span class="arithmatex">\(m + n - 2\)</span> 步,所以最差时间复杂度为 <span class="arithmatex">\(O(2^{m + n})\)</span> 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择。因此实际的路径数量会少一些。</p>
<h2 id="1334">13.3.4. &nbsp; 方法二:记忆化搜索<a class="headerlink" href="#1334" title="Permanent link">&para;</a></h2>
<p>为了避免重复计算重叠子问题,我们引入一个和网格 <code>grid</code> 相同尺寸的记忆列表 <code>mem</code> ,用于记录各个子问题的解,提升搜索效率。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Integer</span><span class="p">.</span><span class="na">MAX_VALUE</span><span class="p">;</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">INT_MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-12-21" name="__codelineno-12-21" href="#__codelineno-12-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dfs_mem</span><span class="p">(</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a> <span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">mem</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">j</span><span class="p">:</span> <span class="nb">int</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;最小路径和:记忆化搜索&quot;&quot;&quot;</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a> <span class="c1"># 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">j</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a> <span class="k">return</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a> <span class="c1"># 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">j</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a> <span class="k">return</span> <span class="n">inf</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a> <span class="c1"># 若已有记录,则直接返回</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a> <span class="k">if</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a> <span class="c1"># 左边和上边单元格的最小路径代价</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a> <span class="n">left</span> <span class="o">=</span> <span class="n">min_path_sum_dfs_mem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a> <span class="n">up</span> <span class="o">=</span> <span class="n">min_path_sum_dfs_mem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-13-17" name="__codelineno-13-17" href="#__codelineno-13-17"></a> <span class="c1"># 记录并返回左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-13-18" name="__codelineno-13-18" href="#__codelineno-13-18"></a> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">up</span><span class="p">)</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-13-19" name="__codelineno-13-19" href="#__codelineno-13-19"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kt">int</span><span class="p">.</span><span class="n">MaxValue</span><span class="p">;</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
<a id="__codelineno-18-19" name="__codelineno-18-19" href="#__codelineno-18-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-18-20" name="__codelineno-18-20" href="#__codelineno-18-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-18-21" name="__codelineno-18-21" href="#__codelineno-18-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>如下图所示,引入记忆化可以消除所有重复计算,时间复杂度取决于状态总数,即网格尺寸 <span class="arithmatex">\(O(nm)\)</span></p>
<p><img alt="记忆化搜索递归树" src="../dp_solution_pipeline.assets/min_path_sum_dfs_mem.png" /></p>
<p align="center"> Fig. 记忆化搜索递归树 </p>
<h2 id="1335">13.3.5. &nbsp; 方法三:动态规划<a class="headerlink" href="#1335" title="Permanent link">&para;</a></h2>
<p>动态规划代码是从底至顶的,仅需循环即可实现。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="o">[</span><span class="kd">class</span><span class="err">]{</span><span class="nc">min</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDP</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">size</span><span class="p">();</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">m</span><span class="p">));</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-23-22" name="__codelineno-23-22" href="#__codelineno-23-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dp</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;最小路径和:动态规划&quot;&quot;&quot;</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a> <span class="n">n</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a> <span class="c1"># 初始化 dp 表</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a> <span class="c1"># 状态转移:首行</span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a> <span class="c1"># 状态转移:首列</span>
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a> <span class="c1"># 状态转移:其余行列</span>
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">j</span><span class="p">])</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">m</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDP</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">Length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">].</span><span class="n">Length</span><span class="p">;</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[,]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="p">];</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>下图展示了最小路径和的状态转移过程。该过程遍历了整个网格,因此时间复杂度为 <span class="arithmatex">\(O(nm)\)</span> ;数组 <code>dp</code> 使用 <span class="arithmatex">\(O(nm)\)</span> 空间。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:12"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label><label for="__tabbed_4_5">&lt;5&gt;</label><label for="__tabbed_4_6">&lt;6&gt;</label><label for="__tabbed_4_7">&lt;7&gt;</label><label for="__tabbed_4_8">&lt;8&gt;</label><label for="__tabbed_4_9">&lt;9&gt;</label><label for="__tabbed_4_10">&lt;10&gt;</label><label for="__tabbed_4_11">&lt;11&gt;</label><label for="__tabbed_4_12">&lt;12&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><img alt="最小路径和的动态规划过程" src="../dp_solution_pipeline.assets/min_path_sum_dp_step1.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step2" src="../dp_solution_pipeline.assets/min_path_sum_dp_step2.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step3" src="../dp_solution_pipeline.assets/min_path_sum_dp_step3.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step4" src="../dp_solution_pipeline.assets/min_path_sum_dp_step4.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step5" src="../dp_solution_pipeline.assets/min_path_sum_dp_step5.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step6" src="../dp_solution_pipeline.assets/min_path_sum_dp_step6.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step7" src="../dp_solution_pipeline.assets/min_path_sum_dp_step7.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step8" src="../dp_solution_pipeline.assets/min_path_sum_dp_step8.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step9" src="../dp_solution_pipeline.assets/min_path_sum_dp_step9.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step10" src="../dp_solution_pipeline.assets/min_path_sum_dp_step10.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step11" src="../dp_solution_pipeline.assets/min_path_sum_dp_step11.png" /></p>
</div>
<div class="tabbed-block">
<p><img alt="min_path_sum_dp_step12" src="../dp_solution_pipeline.assets/min_path_sum_dp_step12.png" /></p>
</div>
</div>
</div>
<p>如果希望进一步节省空间使用,可以考虑进行状态压缩。每个格子只与左边和上边的格子有关,因此我们可以只用一个单行数组来实现 <span class="arithmatex">\(dp\)</span> 表。</p>
<p>由于数组 <code>dp</code> 只能表示一行的状态,因此我们无法提前初始化首列状态,而是在遍历每行中更新它。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:11"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="o">[</span><span class="kd">class</span><span class="err">]{</span><span class="nc">min</span><span class="p">}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDPComp</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">size</span><span class="p">();</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">m</span><span class="p">);</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
<a id="__codelineno-34-16" name="__codelineno-34-16" href="#__codelineno-34-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-17" name="__codelineno-34-17" href="#__codelineno-34-17"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-34-18" name="__codelineno-34-18" href="#__codelineno-34-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-19" name="__codelineno-34-19" href="#__codelineno-34-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-20" name="__codelineno-34-20" href="#__codelineno-34-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-34-21" name="__codelineno-34-21" href="#__codelineno-34-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dp_comp</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;最小路径和:状态压缩后的动态规划&quot;&quot;&quot;</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a> <span class="n">n</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a> <span class="c1"># 初始化 dp 表</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a> <span class="c1"># 状态转移:首行</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a> <span class="c1"># 状态转移:其余行</span>
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a> <span class="c1"># 状态转移:首列</span>
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a> <span class="c1"># 状态转移:其余列</span>
<a id="__codelineno-35-15" name="__codelineno-35-15" href="#__codelineno-35-15"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
<a id="__codelineno-35-16" name="__codelineno-35-16" href="#__codelineno-35-16"></a> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-35-17" name="__codelineno-35-17" href="#__codelineno-35-17"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">m</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDPComp</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">Length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">].</span><span class="n">Length</span><span class="p">;</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">m</span><span class="p">];</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-40-18" name="__codelineno-40-18" href="#__codelineno-40-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-19" name="__codelineno-40-19" href="#__codelineno-40-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-20" name="__codelineno-40-20" href="#__codelineno-40-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-40-21" name="__codelineno-40-21" href="#__codelineno-40-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../dp_problem_features/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 13.2. &amp;nbsp; DP 问题特性New" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
13.2. &nbsp; DP 问题特性New
</div>
</div>
</a>
<a href="../knapsack_problem/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.4. &amp;nbsp; 0-1 背包问题New" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
13.4. &nbsp; 0-1 背包问题New
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208ed371.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.fac441b0.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>