You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_computational_compl.../space_complexity.md

23 KiB

空间复杂度

「空间复杂度 Space Complexity」用于衡量算法使用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似。

算法相关空间

算法运行过程中使用的内存空间主要包括以下几种:

  • 「输入空间」用于存储算法的输入数据;
  • 「暂存空间」用于存储算法运行过程中的变量、对象、函数上下文等数据;
  • 「输出空间」用于存储算法的输出数据;

通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。

暂存空间可以进一步划分为三个部分:

  • 「暂存数据」用于保存算法运行过程中的各种常量、变量、对象等。
  • 「栈帧空间」用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 「指令空间」用于保存编译后的程序指令,在实际统计中通常忽略不计。

因此,在分析一段程序的空间复杂度时,我们一般统计 暂存数据、输出数据、栈帧空间 三部分。

算法使用的相关空间

=== "Java"

```java title=""
/* 类 */
class Node {
    int val;
    Node next;
    Node(int x) { val = x; }
}

/* 函数 */
int function() {
    // do something...
    return 0;
}

int algorithm(int n) {        // 输入数据
    final int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node node = new Node(0);  // 暂存数据(对象)
    int c = function();       // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
```

=== "C++"

```cpp title=""
/* 结构体 */
struct Node {
    int val;
    Node *next;
    Node(int x) : val(x), next(nullptr) {}
};

/* 函数 */
int func() {
    // do something...
    return 0;
}

int algorithm(int n) {        // 输入数据
    const int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node* node = new Node(0); // 暂存数据(对象)
    int c = func();           // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
```

=== "Python"

```python title=""
class Node:
    """类"""
    def __init__(self, x: int):
        self.val: int = x                 # 节点值
        self.next: Optional[Node] = None  # 指向下一节点的指针(引用)

def function() -> int:
    """函数"""
    # do something...
    return 0

def algorithm(n) -> int:  # 输入数据
    A: int = 0            # 暂存数据(常量,一般用大写字母表示)
    b: int = 0            # 暂存数据(变量)
    node = Node(0)        # 暂存数据(对象)
    c: int = function()   # 栈帧空间(调用函数)
    return A + b + c      # 输出数据
```

=== "Go"

```go title=""
/* 结构体 */
type node struct {
    val  int
    next *node
}

/* 创建 node 结构体  */
func newNode(val int) *node {
    return &node{val: val}
}

/* 函数 */
func function() int {
    // do something...
    return 0
}

func algorithm(n int) int { // 输入数据
    const a = 0             // 暂存数据(常量)
    b := 0                  // 暂存数据(变量)
    newNode(0)              // 暂存数据(对象)
    c := function()         // 栈帧空间(调用函数)
    return a + b + c        // 输出数据
}
```

=== "JavaScript"

```javascript title=""
/* 类 */
class Node {
    val;
    next;
    constructor(val) {
        this.val = val === undefined ? 0 : val; // 节点值
        this.next = null;                       // 指向下一节点的引用
    }
}

/* 函数 */
function constFunc() {
    // do something
    return 0;
}

function algorithm(n) {       // 输入数据
    const a = 0;              // 暂存数据(常量)
    let b = 0;                // 暂存数据(变量)
    const node = new Node(0); // 暂存数据(对象)
    const c = constFunc();    // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
```

=== "TypeScript"

```typescript title=""
/* 类 */
class Node {
    val: number;
    next: Node | null;
    constructor(val?: number) {
        this.val = val === undefined ? 0 : val; // 节点值
        this.next = null;                       // 指向下一节点的引用
    }
}

/* 函数 */
function constFunc(): number {
    // do something
    return 0;
}

function algorithm(n: number): number { // 输入数据
    const a = 0;                        // 暂存数据(常量)
    let b = 0;                          // 暂存数据(变量)
    const node = new Node(0);           // 暂存数据(对象)
    const c = constFunc();              // 栈帧空间(调用函数)
    return a + b + c;                   // 输出数据
}
```

=== "C"

```c title=""
/* 函数 */
int func() {
    // do something...
    return 0;
}

int algorithm(int n) { // 输入数据
    const int a = 0;   // 暂存数据(常量)
    int b = 0;         // 暂存数据(变量)
    int c = func();    // 栈帧空间(调用函数)
    return a + b + c;  // 输出数据
}
```

=== "C#"

```csharp title=""
/* 类 */
class Node
{
    int val;
    Node next;
    Node(int x) { val = x; }
}

/* 函数 */
int function()
{
    // do something...
    return 0;
}

int algorithm(int n)          // 输入数据
{
    const int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node node = new Node(0);  // 暂存数据(对象)
    int c = function();       // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
```

=== "Swift"

```swift title=""
/* 类 */
class Node {
    var val: Int
    var next: Node?

    init(x: Int) {
        val = x
    }
}

/* 函数 */
func function() -> Int {
    // do something...
    return 0
}

func algorithm(n: Int) -> Int { // 输入数据
    let a = 0             // 暂存数据(常量)
    var b = 0             // 暂存数据(变量)
    let node = Node(x: 0) // 暂存数据(对象)
    let c = function()    // 栈帧空间(调用函数)
    return a + b + c      // 输出数据
}
```

=== "Zig"

```zig title=""

```

推算方法

空间复杂度的推算方法与时间复杂度大致相同,只是将统计对象从“计算操作数量”转为“使用空间大小”。与时间复杂度不同的是,我们通常只关注「最差空间复杂度」,这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。

最差空间复杂度中的“最差”有两层含义,分别是输入数据的最差分布和算法运行过程中的最差时间点。

  • 以最差输入数据为准。当 n < 10 时,空间复杂度为 O(1) ;但当 n > 10 时,初始化的数组 nums 占用 O(n) 空间;因此最差空间复杂度为 O(n)
  • 以算法运行过程中的峰值内存为准。例如,程序在执行最后一行之前,占用 O(1) 空间;当初始化数组 nums 时,程序占用 O(n) 空间;因此最差空间复杂度为 O(n)

=== "Java"

```java title=""
void algorithm(int n) {
    int a = 0;                   // O(1)
    int[] b = new int[10000];    // O(1)
    if (n > 10)
        int[] nums = new int[n]; // O(n)
}
```

=== "C++"

```cpp title=""
void algorithm(int n) {
    int a = 0;               // O(1)
    vector<int> b(10000);    // O(1)
    if (n > 10)
        vector<int> nums(n); // O(n)
}
```

=== "Python"

```python title=""
def algorithm(n: int) -> None:
    a: int = 0                     # O(1)
    b: List[int] = [0] * 10000     # O(1)
    if n > 10:
        nums: List[int] = [0] * n  # O(n)
```

=== "Go"

```go title=""
func algorithm(n int) {
    a := 0                      // O(1)
    b := make([]int, 10000)     // O(1)
    var nums []int
    if n > 10 {
        nums := make([]int, n)  // O(n)
    }
    fmt.Println(a, b, nums)
}
```

=== "JavaScript"

```javascript title=""
function algorithm(n) {
    const a = 0;                   // O(1)
    const b = new Array(10000);    // O(1)
    if (n > 10) {
        const nums = new Array(n); // O(n)
    }
}
```

=== "TypeScript"

```typescript title=""
function algorithm(n: number): void {
    const a = 0;                   // O(1)
    const b = new Array(10000);    // O(1)
    if (n > 10) {
        const nums = new Array(n); // O(n)
    }
}
```

=== "C"

```c title=""
void algorithm(int n) {
    int a = 0;               // O(1)
    int b[10000];            // O(1)
    if (n > 10)
        vector<int> nums(n); // O(n)
}
```

=== "C#"

```csharp title=""
void algorithm(int n)
{
    int a = 0;                   // O(1)
    int[] b = new int[10000];    // O(1)
    if (n > 10)
    {
        int[] nums = new int[n]; // O(n)
    }
}
```

=== "Swift"

```swift title=""
func algorithm(n: Int) {
    let a = 0 // O(1)
    let b = Array(repeating: 0, count: 10000) // O(1)
    if n > 10 {
        let nums = Array(repeating: 0, count: n) // O(n)
    }
}
```

=== "Zig"

```zig title=""

```

在递归函数中,需要注意统计栈帧空间。例如,函数 loop() 在循环中调用了 nfunction() ,每轮中的 function() 都返回并释放了栈帧空间,因此空间复杂度仍为 O(1) 。而递归函数 recur() 在运行过程中会同时存在 n 个未返回的 recur() ,从而占用 O(n) 的栈帧空间。

=== "Java"

```java title=""
int function() {
    // do something
    return 0;
}
/* 循环 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        function();
    }
}
/* 递归 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}
```

=== "C++"

```cpp title=""
int func() {
    // do something
    return 0;
}
/* 循环 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        func();
    }
}
/* 递归 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}
```

=== "Python"

```python title=""
def function() -> int:
    # do something
    return 0

def loop(n: int) -> None:
    """循环 O(1)"""
    for _ in range(n):
        function()

def recur(n: int) -> int:
    """递归 O(n)"""
    if n == 1: return
    return recur(n - 1)
```

=== "Go"

```go title=""
func function() int {
    // do something
    return 0
}

/* 循环 O(1) */
func loop(n int) {
    for i := 0; i < n; i++ {
        function()
    }
}

/* 递归 O(n) */
func recur(n int) {
    if n == 1 {
        return
    }
    recur(n - 1)
}
```

=== "JavaScript"

```javascript title=""
function constFunc() {
    // do something
    return 0;
}
/* 循环 O(1) */
function loop(n) {
    for (let i = 0; i < n; i++) {
        constFunc();
    }
}
/* 递归 O(n) */
function recur(n) {
    if (n === 1) return;
    return recur(n - 1);
}
```

=== "TypeScript"

```typescript title=""
function constFunc(): number {
    // do something
    return 0;
}
/* 循环 O(1) */
function loop(n: number): void {
    for (let i = 0; i < n; i++) {
        constFunc();
    }
}
/* 递归 O(n) */
function recur(n: number): void {
    if (n === 1) return;
    return recur(n - 1);
}
```

=== "C"

```c title=""
int func() {
    // do something
    return 0;
}
/* 循环 O(1) */
void loop(int n) {
    for (int i = 0; i < n; i++) {
        func();
    }
}
/* 递归 O(n) */
void recur(int n) {
    if (n == 1) return;
    return recur(n - 1);
}
```

=== "C#"

```csharp title=""
int function()
{
    // do something
    return 0;
}
/* 循环 O(1) */
void loop(int n)
{
    for (int i = 0; i < n; i++)
    {
        function();
    }
}
/* 递归 O(n) */
int recur(int n)
{
    if (n == 1) return 1;
    return recur(n - 1);
}
```

=== "Swift"

```swift title=""
@discardableResult
func function() -> Int {
    // do something
    return 0
}

/* 循环 O(1) */
func loop(n: Int) {
    for _ in 0 ..< n {
        function()
    }
}

/* 递归 O(n) */
func recur(n: Int) {
    if n == 1 {
        return
    }
    recur(n: n - 1)
}
```

=== "Zig"

```zig title=""

```

常见类型

设输入数据大小为 n ,常见的空间复杂度类型有(从低到高排列)


\begin{aligned}
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{平方阶} < \text{指数阶}
\end{aligned}

空间复杂度的常见类型

!!! tip

部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段我们先专注于理解空间复杂度的含义和推算方法。

常数阶 O(1)

常数阶常见于数量与输入数据大小 n 无关的常量、变量、对象。

需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 O(1)

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{constant}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{constant}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{constant}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{spaceConstant}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{constant}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{constant}
```

=== "C"

```c title="space_complexity.c"
[class]{}-[func]{constant}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{constant}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{constant}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{constant}
```

线性阶 O(n)

线性阶常见于元素数量与 n 成正比的数组、链表、栈、队列等。

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{linear}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{linear}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{linear}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{spaceLinear}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{linear}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{linear}
```

=== "C"

```c title="space_complexity.c"
[class]{hashTable}-[func]{}

[class]{}-[func]{linear}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{linear}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{linear}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{linear}
```

以下递归函数会同时存在 n 个未返回的 algorithm() 函数,使用 O(n) 大小的栈帧空间。

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{linearRecur}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{linearRecur}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{linear_recur}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{spaceLinearRecur}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{linearRecur}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{linearRecur}
```

=== "C"

```c title="space_complexity.c"
[class]{}-[func]{linearRecur}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{linearRecur}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{linearRecur}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{linearRecur}
```

递归函数产生的线性阶空间复杂度

平方阶 O(n^2)

平方阶常见于矩阵和图,元素数量与 n 成平方关系。

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{quadratic}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{quadratic}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{quadratic}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{spaceQuadratic}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{quadratic}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{quadratic}
```

=== "C"

```c title="space_complexity.c"
[class]{}-[func]{quadratic}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{quadratic}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{quadratic}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{quadratic}
```

在以下递归函数中,同时存在 n 个未返回的 algorithm() ,并且每个函数中都初始化了一个数组,长度分别为 n, n-1, n-2, ..., 2, 1 ,平均长度为 \frac{n}{2} ,因此总体占用 O(n^2) 空间。

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{quadraticRecur}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{quadraticRecur}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{quadratic_recur}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{spaceQuadraticRecur}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{quadraticRecur}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{quadraticRecur}
```

=== "C"

```c title="space_complexity.c"
[class]{}-[func]{quadraticRecur}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{quadraticRecur}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{quadraticRecur}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{quadraticRecur}
```

递归函数产生的平方阶空间复杂度

指数阶 O(2^n)

指数阶常见于二叉树。高度为 n 的「满二叉树」的节点数量为 2^n - 1 ,占用 O(2^n) 空间。

=== "Java"

```java title="space_complexity.java"
[class]{space_complexity}-[func]{buildTree}
```

=== "C++"

```cpp title="space_complexity.cpp"
[class]{}-[func]{buildTree}
```

=== "Python"

```python title="space_complexity.py"
[class]{}-[func]{build_tree}
```

=== "Go"

```go title="space_complexity.go"
[class]{}-[func]{buildTree}
```

=== "JavaScript"

```javascript title="space_complexity.js"
[class]{}-[func]{buildTree}
```

=== "TypeScript"

```typescript title="space_complexity.ts"
[class]{}-[func]{buildTree}
```

=== "C"

```c title="space_complexity.c"
[class]{}-[func]{buildTree}
```

=== "C#"

```csharp title="space_complexity.cs"
[class]{space_complexity}-[func]{buildTree}
```

=== "Swift"

```swift title="space_complexity.swift"
[class]{}-[func]{buildTree}
```

=== "Zig"

```zig title="space_complexity.zig"
[class]{}-[func]{buildTree}
```

满二叉树产生的指数阶空间复杂度

对数阶 O(\log n)

对数阶常见于分治算法和数据类型转换等。

例如“归并排序”算法,输入长度为 n 的数组,每轮递归将数组从中点划分为两半,形成高度为 \log n 的递归树,使用 O(\log n) 栈帧空间。

再例如“数字转化为字符串”,输入任意正整数 n ,它的位数为 \log_{10} n ,即对应字符串长度为 \log_{10} n ,因此空间复杂度为 O(\log_{10} n) = O(\log n)

权衡时间与空间

理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。

降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。

选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此以空间换时间通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。