You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_greedy/fractional_knapsack_problem.md

4.5 KiB

分数背包问题

!!! question

给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$、价值为 $val[i-1]$ ,和一个容量为 $cap$ 的背包。每个物品只能选择一次,**但可以选择物品的一部分,价值根据选择的重量比例计算**,问在不超过背包容量下背包中物品的最大价值。

分数背包问题的示例数据

分数背包和 0-1 背包整体上非常相似,状态包含当前物品 i 和容量 c ,目标是求不超过背包容量下的最大价值。

不同点在于,本题允许只选择物品的一部分。如下图所示,我们可以对物品任意地进行切分,并按照重量比例来计算物品价值

  1. 对于物品 i ,它在单位重量下的价值为 val[i-1] / wgt[i-1] ,简称为单位价值。
  2. 假设放入一部分物品 i ,重量为 w ,则背包增加的价值为 w \times val[i-1] / wgt[i-1]

物品在单位重量下的价值

贪心策略确定

最大化背包内物品总价值,本质上是要最大化单位重量下的物品价值。由此便可推出下图所示的贪心策略。

  1. 将物品按照单位价值从高到低进行排序。
  2. 遍历所有物品,每轮贪心地选择单位价值最高的物品
  3. 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。

分数背包的贪心策略

代码实现

我们建立了一个物品类 Item ,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。

=== "Java"

```java title="fractional_knapsack.java"
[class]{Item}-[func]{}

[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```

=== "C++"

```cpp title="fractional_knapsack.cpp"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "Python"

```python title="fractional_knapsack.py"
[class]{Item}-[func]{}

[class]{}-[func]{fractional_knapsack}
```

=== "Go"

```go title="fractional_knapsack.go"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "JS"

```javascript title="fractional_knapsack.js"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "TS"

```typescript title="fractional_knapsack.ts"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "C"

```c title="fractional_knapsack.c"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "C#"

```csharp title="fractional_knapsack.cs"
[class]{Item}-[func]{}

[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```

=== "Swift"

```swift title="fractional_knapsack.swift"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "Zig"

```zig title="fractional_knapsack.zig"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "Dart"

```dart title="fractional_knapsack.dart"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== "Rust"

```rust title="fractional_knapsack.rs"
[class]{Item}-[func]{}

[class]{}-[func]{fractional_knapsack}
```

最差情况下,需要遍历整个物品列表,因此时间复杂度为 O(n) ,其中 n 为物品数量。

由于初始化了一个 Item 对象列表,因此空间复杂度为 O(n)

正确性证明

采用反证法。假设物品 x 是单位价值最高的物品,使用某算法求得最大价值为 res ,但该解中不包含物品 x

现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 x 。由于物品 x 的单位价值最高,因此替换后的总价值一定大于 res这与 res 是最优解矛盾,说明最优解中必须包含物品 x

对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。

如下图所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。

分数背包问题的几何表示