36 KiB
comments |
---|
true |
4.2 链表
内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。
「链表 linked list」是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,通过它可以从当前节点访问到下一个节点。
链表的设计使得各个节点可以被分散存储在内存各处,它们的内存地址是无须连续的。
图 4-5 链表定义与存储方式
观察图 4-5 ,链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。
- 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
- 尾节点指向的是“空”,它在 Java、C++ 和 Python 中分别被记为
\text{null}
、\text{nullptr}
和\text{None}
。 - 在 C、C++、Go 和 Rust 等支持指针的语言中,上述的“引用”应被替换为“指针”。
如以下代码所示,链表节点 ListNode
除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间。
=== "Python"
```python title=""
class ListNode:
"""链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向下一节点的引用
```
=== "C++"
```cpp title=""
/* 链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向下一节点的指针
ListNode(int x) : val(x), next(nullptr) {} // 构造函数
};
```
=== "Java"
```java title=""
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向下一节点的引用
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C#"
```csharp title=""
/* 链表节点类 */
class ListNode(int x) { //构造函数
int val = x; // 节点值
ListNode? next; // 指向下一节点的引用
}
```
=== "Go"
```go title=""
/* 链表节点结构体 */
type ListNode struct {
Val int // 节点值
Next *ListNode // 指向下一节点的指针
}
// NewListNode 构造函数,创建一个新的链表
func NewListNode(val int) *ListNode {
return &ListNode{
Val: val,
Next: nil,
}
}
```
=== "Swift"
```swift title=""
/* 链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向下一节点的引用
init(x: Int) { // 构造函数
val = x
}
}
```
=== "JS"
```javascript title=""
/* 链表节点类 */
class ListNode {
constructor(val, next) {
this.val = (val === undefined ? 0 : val); // 节点值
this.next = (next === undefined ? null : next); // 指向下一节点的引用
}
}
```
=== "TS"
```typescript title=""
/* 链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
constructor(val?: number, next?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向下一节点的引用
}
}
```
=== "Dart"
```dart title=""
/* 链表节点类 */
class ListNode {
int val; // 节点值
ListNode? next; // 指向下一节点的引用
ListNode(this.val, [this.next]); // 构造函数
}
```
=== "Rust"
```rust title=""
use std::rc::Rc;
use std::cell::RefCell;
/* 链表节点类 */
#[derive(Debug)]
struct ListNode {
val: i32, // 节点值
next: Option<Rc<RefCell<ListNode>>>, // 指向下一节点的指针
}
```
=== "C"
```c title=""
/* 链表节点结构体 */
typedef struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向下一节点的指针
} ListNode;
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
return node;
}
```
=== "Zig"
```zig title=""
// 链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向下一节点的指针
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
}
};
}
```
4.2.1 链表常用操作
1. 初始化链表
建立链表分为两步,第一步是初始化各个节点对象,第二步是构建引用指向关系。初始化完成后,我们就可以从链表的头节点出发,通过引用指向 next
依次访问所有节点。
=== "Python"
```python title="linked_list.py"
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
n2 = ListNode(2)
n3 = ListNode(5)
n4 = ListNode(4)
# 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "C++"
```cpp title="linked_list.cpp"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = new ListNode(1);
ListNode* n1 = new ListNode(3);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(5);
ListNode* n4 = new ListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
=== "Java"
```java title="linked_list.java"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "C#"
```csharp title="linked_list.cs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode n0 = new(1);
ListNode n1 = new(3);
ListNode n2 = new(2);
ListNode n3 = new(5);
ListNode n4 = new(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "Go"
```go title="linked_list.go"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
n0 := NewListNode(1)
n1 := NewListNode(3)
n2 := NewListNode(2)
n3 := NewListNode(5)
n4 := NewListNode(4)
// 构建引用指向
n0.Next = n1
n1.Next = n2
n2.Next = n3
n3.Next = n4
```
=== "Swift"
```swift title="linked_list.swift"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = ListNode(x: 1)
let n1 = ListNode(x: 3)
let n2 = ListNode(x: 2)
let n3 = ListNode(x: 5)
let n4 = ListNode(x: 4)
// 构建引用指向
n0.next = n1
n1.next = n2
n2.next = n3
n3.next = n4
```
=== "JS"
```javascript title="linked_list.js"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "TS"
```typescript title="linked_list.ts"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
const n0 = new ListNode(1);
const n1 = new ListNode(3);
const n2 = new ListNode(2);
const n3 = new ListNode(5);
const n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "Dart"
```dart title="linked_list.dart"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */\
// 初始化各个节点
ListNode n0 = ListNode(1);
ListNode n1 = ListNode(3);
ListNode n2 = ListNode(2);
ListNode n3 = ListNode(5);
ListNode n4 = ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
```
=== "Rust"
```rust title="linked_list.rs"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
let n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));
let n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));
let n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));
let n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));
let n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));
// 构建引用指向
n0.borrow_mut().next = Some(n1.clone());
n1.borrow_mut().next = Some(n2.clone());
n2.borrow_mut().next = Some(n3.clone());
n3.borrow_mut().next = Some(n4.clone());
```
=== "C"
```c title="linked_list.c"
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
// 初始化各个节点
ListNode* n0 = newListNode(1);
ListNode* n1 = newListNode(3);
ListNode* n2 = newListNode(2);
ListNode* n3 = newListNode(5);
ListNode* n4 = newListNode(4);
// 构建引用指向
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;
```
=== "Zig"
```zig title="linked_list.zig"
// 初始化链表
// 初始化各个节点
var n0 = inc.ListNode(i32){.val = 1};
var n1 = inc.ListNode(i32){.val = 3};
var n2 = inc.ListNode(i32){.val = 2};
var n3 = inc.ListNode(i32){.val = 5};
var n4 = inc.ListNode(i32){.val = 4};
// 构建引用指向
n0.next = &n1;
n1.next = &n2;
n2.next = &n3;
n3.next = &n4;
```
数组整体是一个变量,比如数组 nums
包含元素 nums[0]
和 nums[1]
等,而链表是由多个独立的节点对象组成的。我们通常将头节点当作链表的代称,比如以上代码中的链表可被记做链表 n0
。
2. 插入节点
在链表中插入节点非常容易。如图 4-6 所示,假设我们想在相邻的两个节点 n0
和 n1
之间插入一个新节点 P
,则只需要改变两个节点引用(指针)即可,时间复杂度为 O(1)
。
相比之下,在数组中插入元素的时间复杂度为 O(n)
,在大数据量下的效率较低。
图 4-6 链表插入节点示例
=== "Python"
```python title="linked_list.py"
def insert(n0: ListNode, P: ListNode):
"""在链表的节点 n0 之后插入节点 P"""
n1 = n0.next
P.next = n1
n0.next = P
```
=== "C++"
```cpp title="linked_list.cpp"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode *n0, ListNode *P) {
ListNode *n1 = n0->next;
P->next = n1;
n0->next = P;
}
```
=== "Java"
```java title="linked_list.java"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode n0, ListNode P) {
ListNode n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "C#"
```csharp title="linked_list.cs"
/* 在链表的节点 n0 之后插入节点 P */
void Insert(ListNode n0, ListNode P) {
ListNode? n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "Go"
```go title="linked_list.go"
/* 在链表的节点 n0 之后插入节点 P */
func insertNode(n0 *ListNode, P *ListNode) {
n1 := n0.Next
P.Next = n1
n0.Next = P
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 在链表的节点 n0 之后插入节点 P */
func insert(n0: ListNode, P: ListNode) {
let n1 = n0.next
P.next = n1
n0.next = P
}
```
=== "JS"
```javascript title="linked_list.js"
/* 在链表的节点 n0 之后插入节点 P */
function insert(n0, P) {
const n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "TS"
```typescript title="linked_list.ts"
/* 在链表的节点 n0 之后插入节点 P */
function insert(n0: ListNode, P: ListNode): void {
const n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "Dart"
```dart title="linked_list.dart"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode n0, ListNode P) {
ListNode? n1 = n0.next;
P.next = n1;
n0.next = P;
}
```
=== "Rust"
```rust title="linked_list.rs"
/* 在链表的节点 n0 之后插入节点 P */
#[allow(non_snake_case)]
pub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {
let n1 = n0.borrow_mut().next.take();
P.borrow_mut().next = n1;
n0.borrow_mut().next = Some(P);
}
```
=== "C"
```c title="linked_list.c"
/* 在链表的节点 n0 之后插入节点 P */
void insert(ListNode *n0, ListNode *P) {
ListNode *n1 = n0->next;
P->next = n1;
n0->next = P;
}
```
=== "Zig"
```zig title="linked_list.zig"
// 在链表的节点 n0 之后插入节点 P
fn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {
var n1 = n0.?.next;
P.?.next = n1;
n0.?.next = P;
}
```
3. 删除节点
如图 4-7 所示,在链表中删除节点也非常方便,只需改变一个节点的引用(指针)即可。
请注意,尽管在删除操作完成后节点 P
仍然指向 n1
,但实际上遍历此链表已经无法访问到 P
,这意味着 P
已经不再属于该链表了。
图 4-7 链表删除节点
=== "Python"
```python title="linked_list.py"
def remove(n0: ListNode):
"""删除链表的节点 n0 之后的首个节点"""
if not n0.next:
return
# n0 -> P -> n1
P = n0.next
n1 = P.next
n0.next = n1
```
=== "C++"
```cpp title="linked_list.cpp"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode *n0) {
if (n0->next == nullptr)
return;
// n0 -> P -> n1
ListNode *P = n0->next;
ListNode *n1 = P->next;
n0->next = n1;
// 释放内存
delete P;
}
```
=== "Java"
```java title="linked_list.java"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode n0) {
if (n0.next == null)
return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode n1 = P.next;
n0.next = n1;
}
```
=== "C#"
```csharp title="linked_list.cs"
/* 删除链表的节点 n0 之后的首个节点 */
void Remove(ListNode n0) {
if (n0.next == null)
return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode? n1 = P.next;
n0.next = n1;
}
```
=== "Go"
```go title="linked_list.go"
/* 删除链表的节点 n0 之后的首个节点 */
func removeItem(n0 *ListNode) {
if n0.Next == nil {
return
}
// n0 -> P -> n1
P := n0.Next
n1 := P.Next
n0.Next = n1
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 删除链表的节点 n0 之后的首个节点 */
func remove(n0: ListNode) {
if n0.next == nil {
return
}
// n0 -> P -> n1
let P = n0.next
let n1 = P?.next
n0.next = n1
P?.next = nil
}
```
=== "JS"
```javascript title="linked_list.js"
/* 删除链表的节点 n0 之后的首个节点 */
function remove(n0) {
if (!n0.next) return;
// n0 -> P -> n1
const P = n0.next;
const n1 = P.next;
n0.next = n1;
}
```
=== "TS"
```typescript title="linked_list.ts"
/* 删除链表的节点 n0 之后的首个节点 */
function remove(n0: ListNode): void {
if (!n0.next) {
return;
}
// n0 -> P -> n1
const P = n0.next;
const n1 = P.next;
n0.next = n1;
}
```
=== "Dart"
```dart title="linked_list.dart"
/* 删除链表的节点 n0 之后的首个节点 */
void remove(ListNode n0) {
if (n0.next == null) return;
// n0 -> P -> n1
ListNode P = n0.next!;
ListNode? n1 = P.next;
n0.next = n1;
}
```
=== "Rust"
```rust title="linked_list.rs"
/* 删除链表的节点 n0 之后的首个节点 */
#[allow(non_snake_case)]
pub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {
if n0.borrow().next.is_none() {return};
// n0 -> P -> n1
let P = n0.borrow_mut().next.take();
if let Some(node) = P {
let n1 = node.borrow_mut().next.take();
n0.borrow_mut().next = n1;
}
}
```
=== "C"
```c title="linked_list.c"
/* 删除链表的节点 n0 之后的首个节点 */
// 注意:stdio.h 占用了 remove 关键词
void removeItem(ListNode *n0) {
if (!n0->next)
return;
// n0 -> P -> n1
ListNode *P = n0->next;
ListNode *n1 = P->next;
n0->next = n1;
// 释放内存
free(P);
}
```
=== "Zig"
```zig title="linked_list.zig"
// 删除链表的节点 n0 之后的首个节点
fn remove(n0: ?*inc.ListNode(i32)) void {
if (n0.?.next == null) return;
// n0 -> P -> n1
var P = n0.?.next;
var n1 = P.?.next;
n0.?.next = n1;
}
```
4. 访问节点
在链表访问节点的效率较低。如上节所述,我们可以在 O(1)
时间下访问数组中的任意元素。链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 i
个节点需要循环 i - 1
轮,时间复杂度为 O(n)
。
=== "Python"
```python title="linked_list.py"
def access(head: ListNode, index: int) -> ListNode | None:
"""访问链表中索引为 index 的节点"""
for _ in range(index):
if not head:
return None
head = head.next
return head
```
=== "C++"
```cpp title="linked_list.cpp"
/* 访问链表中索引为 index 的节点 */
ListNode *access(ListNode *head, int index) {
for (int i = 0; i < index; i++) {
if (head == nullptr)
return nullptr;
head = head->next;
}
return head;
}
```
=== "Java"
```java title="linked_list.java"
/* 访问链表中索引为 index 的节点 */
ListNode access(ListNode head, int index) {
for (int i = 0; i < index; i++) {
if (head == null)
return null;
head = head.next;
}
return head;
}
```
=== "C#"
```csharp title="linked_list.cs"
/* 访问链表中索引为 index 的节点 */
ListNode? Access(ListNode? head, int index) {
for (int i = 0; i < index; i++) {
if (head == null)
return null;
head = head.next;
}
return head;
}
```
=== "Go"
```go title="linked_list.go"
/* 访问链表中索引为 index 的节点 */
func access(head *ListNode, index int) *ListNode {
for i := 0; i < index; i++ {
if head == nil {
return nil
}
head = head.Next
}
return head
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 访问链表中索引为 index 的节点 */
func access(head: ListNode, index: Int) -> ListNode? {
var head: ListNode? = head
for _ in 0 ..< index {
if head == nil {
return nil
}
head = head?.next
}
return head
}
```
=== "JS"
```javascript title="linked_list.js"
/* 访问链表中索引为 index 的节点 */
function access(head, index) {
for (let i = 0; i < index; i++) {
if (!head) {
return null;
}
head = head.next;
}
return head;
}
```
=== "TS"
```typescript title="linked_list.ts"
/* 访问链表中索引为 index 的节点 */
function access(head: ListNode | null, index: number): ListNode | null {
for (let i = 0; i < index; i++) {
if (!head) {
return null;
}
head = head.next;
}
return head;
}
```
=== "Dart"
```dart title="linked_list.dart"
/* 访问链表中索引为 index 的节点 */
ListNode? access(ListNode? head, int index) {
for (var i = 0; i < index; i++) {
if (head == null) return null;
head = head.next;
}
return head;
}
```
=== "Rust"
```rust title="linked_list.rs"
/* 访问链表中索引为 index 的节点 */
pub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {
if index <= 0 {return head};
if let Some(node) = &head.borrow_mut().next {
return access(node.clone(), index - 1);
}
return head;
}
```
=== "C"
```c title="linked_list.c"
/* 访问链表中索引为 index 的节点 */
ListNode *access(ListNode *head, int index) {
while (head && head->next && index) {
head = head->next;
index--;
}
return head;
}
```
=== "Zig"
```zig title="linked_list.zig"
// 访问链表中索引为 index 的节点
fn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {
var head = node;
var i: i32 = 0;
while (i < index) : (i += 1) {
head = head.?.next;
if (head == null) return null;
}
return head;
}
```
5. 查找节点
遍历链表,查找链表内值为 target
的节点,输出节点在链表中的索引。此过程也属于线性查找。
=== "Python"
```python title="linked_list.py"
def find(head: ListNode, target: int) -> int:
"""在链表中查找值为 target 的首个节点"""
index = 0
while head:
if head.val == target:
return index
head = head.next
index += 1
return -1
```
=== "C++"
```cpp title="linked_list.cpp"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode *head, int target) {
int index = 0;
while (head != nullptr) {
if (head->val == target)
return index;
head = head->next;
index++;
}
return -1;
}
```
=== "Java"
```java title="linked_list.java"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode head, int target) {
int index = 0;
while (head != null) {
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
```
=== "C#"
```csharp title="linked_list.cs"
/* 在链表中查找值为 target 的首个节点 */
int Find(ListNode? head, int target) {
int index = 0;
while (head != null) {
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
```
=== "Go"
```go title="linked_list.go"
/* 在链表中查找值为 target 的首个节点 */
func findNode(head *ListNode, target int) int {
index := 0
for head != nil {
if head.Val == target {
return index
}
head = head.Next
index++
}
return -1
}
```
=== "Swift"
```swift title="linked_list.swift"
/* 在链表中查找值为 target 的首个节点 */
func find(head: ListNode, target: Int) -> Int {
var head: ListNode? = head
var index = 0
while head != nil {
if head?.val == target {
return index
}
head = head?.next
index += 1
}
return -1
}
```
=== "JS"
```javascript title="linked_list.js"
/* 在链表中查找值为 target 的首个节点 */
function find(head, target) {
let index = 0;
while (head !== null) {
if (head.val === target) {
return index;
}
head = head.next;
index += 1;
}
return -1;
}
```
=== "TS"
```typescript title="linked_list.ts"
/* 在链表中查找值为 target 的首个节点 */
function find(head: ListNode | null, target: number): number {
let index = 0;
while (head !== null) {
if (head.val === target) {
return index;
}
head = head.next;
index += 1;
}
return -1;
}
```
=== "Dart"
```dart title="linked_list.dart"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode? head, int target) {
int index = 0;
while (head != null) {
if (head.val == target) {
return index;
}
head = head.next;
index++;
}
return -1;
}
```
=== "Rust"
```rust title="linked_list.rs"
/* 在链表中查找值为 target 的首个节点 */
pub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {
if head.borrow().val == target {return index};
if let Some(node) = &head.borrow_mut().next {
return find(node.clone(), target, index + 1);
}
return -1;
}
```
=== "C"
```c title="linked_list.c"
/* 在链表中查找值为 target 的首个节点 */
int find(ListNode *head, int target) {
int index = 0;
while (head) {
if (head->val == target)
return index;
head = head->next;
index++;
}
return -1;
}
```
=== "Zig"
```zig title="linked_list.zig"
// 在链表中查找值为 target 的首个节点
fn find(node: ?*inc.ListNode(i32), target: i32) i32 {
var head = node;
var index: i32 = 0;
while (head != null) {
if (head.?.val == target) return index;
head = head.?.next;
index += 1;
}
return -1;
}
```
4.2.2 数组 VS 链表
表 4-1 总结对比了数组和链表的各项特点与操作效率。由于它们采用两种相反的存储策略,因此各种性质和操作效率也呈现对立的特点。
表 4-1 数组与链表的效率对比
数组 | 链表 | |
---|---|---|
存储方式 | 连续内存空间 | 分散内存空间 |
容量扩展 | 长度不可变 | 可灵活扩展 |
内存效率 | 元素占用内存少、但可能浪费空间 | 元素占用内存多 |
访问元素 | O(1) |
O(n) |
添加元素 | O(n) |
O(1) |
删除元素 | O(n) |
O(1) |
4.2.3 常见链表类型
如图 4-8 所示,常见的链表类型包括三种。
- 单向链表:即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空
\text{None}
。 - 环形链表:如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
- 双向链表:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
=== "Python"
```python title=""
class ListNode:
"""双向链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: ListNode | None = None # 指向后继节点的引用
self.prev: ListNode | None = None # 指向前驱节点的引用
```
=== "C++"
```cpp title=""
/* 双向链表节点结构体 */
struct ListNode {
int val; // 节点值
ListNode *next; // 指向后继节点的指针
ListNode *prev; // 指向前驱节点的指针
ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // 构造函数
};
```
=== "Java"
```java title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
ListNode(int x) { val = x; } // 构造函数
}
```
=== "C#"
```csharp title=""
/* 双向链表节点类 */
class ListNode(int x) { // 构造函数
int val = x; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
}
```
=== "Go"
```go title=""
/* 双向链表节点结构体 */
type DoublyListNode struct {
Val int // 节点值
Next *DoublyListNode // 指向后继节点的指针
Prev *DoublyListNode // 指向前驱节点的指针
}
// NewDoublyListNode 初始化
func NewDoublyListNode(val int) *DoublyListNode {
return &DoublyListNode{
Val: val,
Next: nil,
Prev: nil,
}
}
```
=== "Swift"
```swift title=""
/* 双向链表节点类 */
class ListNode {
var val: Int // 节点值
var next: ListNode? // 指向后继节点的引用
var prev: ListNode? // 指向前驱节点的引用
init(x: Int) { // 构造函数
val = x
}
}
```
=== "JS"
```javascript title=""
/* 双向链表节点类 */
class ListNode {
constructor(val, next, prev) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的引用
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
}
}
```
=== "TS"
```typescript title=""
/* 双向链表节点类 */
class ListNode {
val: number;
next: ListNode | null;
prev: ListNode | null;
constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {
this.val = val === undefined ? 0 : val; // 节点值
this.next = next === undefined ? null : next; // 指向后继节点的引用
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
}
}
```
=== "Dart"
```dart title=""
/* 双向链表节点类 */
class ListNode {
int val; // 节点值
ListNode next; // 指向后继节点的引用
ListNode prev; // 指向前驱节点的引用
ListNode(this.val, [this.next, this.prev]); // 构造函数
}
```
=== "Rust"
```rust title=""
use std::rc::Rc;
use std::cell::RefCell;
/* 双向链表节点类型 */
#[derive(Debug)]
struct ListNode {
val: i32, // 节点值
next: Option<Rc<RefCell<ListNode>>>, // 指向后继节点的指针
prev: Option<Rc<RefCell<ListNode>>>, // 指向前驱节点的指针
}
/* 构造函数 */
impl ListNode {
fn new(val: i32) -> Self {
ListNode {
val,
next: None,
prev: None,
}
}
}
```
=== "C"
```c title=""
/* 双向链表节点结构体 */
typedef struct ListNode {
int val; // 节点值
struct ListNode *next; // 指向后继节点的指针
struct ListNode *prev; // 指向前驱节点的指针
} ListNode;
/* 构造函数 */
ListNode *newListNode(int val) {
ListNode *node;
node = (ListNode *) malloc(sizeof(ListNode));
node->val = val;
node->next = NULL;
node->prev = NULL;
return node;
}
```
=== "Zig"
```zig title=""
// 双向链表节点类
pub fn ListNode(comptime T: type) type {
return struct {
const Self = @This();
val: T = 0, // 节点值
next: ?*Self = null, // 指向后继节点的指针
prev: ?*Self = null, // 指向前驱节点的指针
// 构造函数
pub fn init(self: *Self, x: i32) void {
self.val = x;
self.next = null;
self.prev = null;
}
};
}
```
图 4-8 常见链表种类
4.2.4 链表典型应用
单向链表通常用于实现栈、队列、哈希表和图等数据结构。
- 栈与队列:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- 哈希表:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- 图:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常被用于需要快速查找前一个和下一个元素的场景。
- 高级数据结构:比如在红黑树、B 树中,我们需要访问节点的父节点,这可以通过在节点中保存一个指向父节点的引用来实现,类似于双向链表。
- 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
- LRU 算法:在缓存淘汰算法(LRU)中,我们需要快速找到最近最少使用的数据,以及支持快速地添加和删除节点。这时候使用双向链表就非常合适。
循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。
- 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循环的操作就可以通过循环链表来实现。
- 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。