|
|
=begin
|
|
|
File: avl_tree.rb
|
|
|
Created Time: 2024-04-17
|
|
|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
|
|
=end
|
|
|
|
|
|
require_relative '../utils/tree_node'
|
|
|
require_relative '../utils/print_util'
|
|
|
|
|
|
### AVL 树 ###
|
|
|
class AVLTree
|
|
|
### 构造方法 ###
|
|
|
def initialize
|
|
|
@root = nil
|
|
|
end
|
|
|
|
|
|
### 获取二叉树根节点 ###
|
|
|
def get_root
|
|
|
@root
|
|
|
end
|
|
|
|
|
|
### 获取节点高度 ###
|
|
|
def height(node)
|
|
|
# 空节点高度为 -1 ,叶节点高度为 0
|
|
|
return node.height unless node.nil?
|
|
|
|
|
|
-1
|
|
|
end
|
|
|
|
|
|
### 更新节点高度 ###
|
|
|
def update_height(node)
|
|
|
# 节点高度等于最高子树高度 + 1
|
|
|
node.height = [height(node.left), height(node.right)].max + 1
|
|
|
end
|
|
|
|
|
|
### 获取平衡因子 ###
|
|
|
def balance_factor(node)
|
|
|
# 空节点平衡因子为 0
|
|
|
return 0 if node.nil?
|
|
|
|
|
|
# 节点平衡因子 = 左子树高度 - 右子树高度
|
|
|
height(node.left) - height(node.right)
|
|
|
end
|
|
|
|
|
|
### 右旋操作 ###
|
|
|
def right_rotate(node)
|
|
|
child = node.left
|
|
|
grand_child = child.right
|
|
|
# 以 child 为原点,将 node 向右旋转
|
|
|
child.right = node
|
|
|
node.left = grand_child
|
|
|
# 更新节点高度
|
|
|
update_height(node)
|
|
|
update_height(child)
|
|
|
# 返回旋转后子树的根节点
|
|
|
child
|
|
|
end
|
|
|
|
|
|
### 左旋操作 ###
|
|
|
def left_rotate(node)
|
|
|
child = node.right
|
|
|
grand_child = child.left
|
|
|
# 以 child 为原点,将 node 向左旋转
|
|
|
child.left = node
|
|
|
node.right = grand_child
|
|
|
# 更新节点高度
|
|
|
update_height(node)
|
|
|
update_height(child)
|
|
|
# 返回旋转后子树的根节点
|
|
|
child
|
|
|
end
|
|
|
|
|
|
### 执行旋转操作,使该子树重新恢复平衡 ###
|
|
|
def rotate(node)
|
|
|
# 获取节点 node 的平衡因子
|
|
|
balance_factor = balance_factor(node)
|
|
|
# 左遍树
|
|
|
if balance_factor > 1
|
|
|
if balance_factor(node.left) >= 0
|
|
|
# 右旋
|
|
|
return right_rotate(node)
|
|
|
else
|
|
|
# 先左旋后右旋
|
|
|
node.left = left_rotate(node.left)
|
|
|
return right_rotate(node)
|
|
|
end
|
|
|
# 右遍树
|
|
|
elsif balance_factor < -1
|
|
|
if balance_factor(node.right) <= 0
|
|
|
# 左旋
|
|
|
return left_rotate(node)
|
|
|
else
|
|
|
# 先右旋后左旋
|
|
|
node.right = right_rotate(node.right)
|
|
|
return left_rotate(node)
|
|
|
end
|
|
|
end
|
|
|
# 平衡树,无须旋转,直接返回
|
|
|
node
|
|
|
end
|
|
|
|
|
|
### 插入节点 ###
|
|
|
def insert(val)
|
|
|
@root = insert_helper(@root, val)
|
|
|
end
|
|
|
|
|
|
### 递归插入节点(辅助方法)###
|
|
|
def insert_helper(node, val)
|
|
|
return TreeNode.new(val) if node.nil?
|
|
|
# 1. 查找插入位置并插入节点
|
|
|
if val < node.val
|
|
|
node.left = insert_helper(node.left, val)
|
|
|
elsif val > node.val
|
|
|
node.right = insert_helper(node.right, val)
|
|
|
else
|
|
|
# 重复节点不插入,直接返回
|
|
|
return node
|
|
|
end
|
|
|
# 更新节点高度
|
|
|
update_height(node)
|
|
|
# 2. 执行旋转操作,使该子树重新恢复平衡
|
|
|
rotate(node)
|
|
|
end
|
|
|
|
|
|
### 删除节点 ###
|
|
|
def remove(val)
|
|
|
@root = remove_helper(@root, val)
|
|
|
end
|
|
|
|
|
|
### 递归删除节点(辅助方法)###
|
|
|
def remove_helper(node, val)
|
|
|
return if node.nil?
|
|
|
# 1. 查找节点并删除
|
|
|
if val < node.val
|
|
|
node.left = remove_helper(node.left, val)
|
|
|
elsif val > node.val
|
|
|
node.right = remove_helper(node.right, val)
|
|
|
else
|
|
|
if node.left.nil? || node.right.nil?
|
|
|
child = node.left || node.right
|
|
|
# 子节点数量 = 0 ,直接删除 node 并返回
|
|
|
return if child.nil?
|
|
|
# 子节点数量 = 1 ,直接删除 node
|
|
|
node = child
|
|
|
else
|
|
|
# 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
|
|
temp = node.right
|
|
|
while !temp.left.nil?
|
|
|
temp = temp.left
|
|
|
end
|
|
|
node.right = remove_helper(node.right, temp.val)
|
|
|
node.val = temp.val
|
|
|
end
|
|
|
end
|
|
|
# 更新节点高度
|
|
|
update_height(node)
|
|
|
# 2. 执行旋转操作,使该子树重新恢复平衡
|
|
|
rotate(node)
|
|
|
end
|
|
|
|
|
|
### 查找节点 ###
|
|
|
def search(val)
|
|
|
cur = @root
|
|
|
# 循环查找,越过叶节点后跳出
|
|
|
while !cur.nil?
|
|
|
# 目标节点在 cur 的右子树中
|
|
|
if cur.val < val
|
|
|
cur = cur.right
|
|
|
# 目标节点在 cur 的左子树中
|
|
|
elsif cur.val > val
|
|
|
cur = cur.left
|
|
|
# 找到目标节点,跳出循环
|
|
|
else
|
|
|
break
|
|
|
end
|
|
|
end
|
|
|
# 返回目标节点
|
|
|
cur
|
|
|
end
|
|
|
end
|
|
|
|
|
|
### Driver Code ###
|
|
|
if __FILE__ == $0
|
|
|
def test_insert(tree, val)
|
|
|
tree.insert(val)
|
|
|
puts "\n插入节点 #{val} 后,AVL 树为"
|
|
|
print_tree(tree.get_root)
|
|
|
end
|
|
|
|
|
|
def test_remove(tree, val)
|
|
|
tree.remove(val)
|
|
|
puts "\n删除节点 #{val} 后,AVL 树为"
|
|
|
print_tree(tree.get_root)
|
|
|
end
|
|
|
|
|
|
# 初始化空 AVL 树
|
|
|
avl_tree = AVLTree.new
|
|
|
|
|
|
# 插入节点
|
|
|
# 请关注插入节点后,AVL 树是如何保持平衡的
|
|
|
for val in [1, 2, 3, 4, 5, 8, 7, 9, 10, 6]
|
|
|
test_insert(avl_tree, val)
|
|
|
end
|
|
|
|
|
|
# 插入重复节点
|
|
|
test_insert(avl_tree, 7)
|
|
|
|
|
|
# 删除节点
|
|
|
# 请关注删除节点后,AVL 树是如何保持平衡的
|
|
|
test_remove(avl_tree, 8) # 删除度为 0 的节点
|
|
|
test_remove(avl_tree, 5) # 删除度为 1 的节点
|
|
|
test_remove(avl_tree, 4) # 删除度为 2 的节点
|
|
|
|
|
|
result_node = avl_tree.search(7)
|
|
|
puts "\n查找到的节点对象为 #{result_node},节点值 = #{result_node.val}"
|
|
|
end
|