You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/docs/chapter_tree/binary_search_tree.md

130 lines
6.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 二元搜尋樹
如下圖所示,<u>二元搜尋樹binary search tree</u>滿足以下條件。
1. 對於根節點,左子樹中所有節點的值 $<$ 根節點的值 $<$ 右子樹中所有節點的值。
2. 任意節點的左、右子樹也是二元搜尋樹,即同樣滿足條件 `1.`
![二元搜尋樹](binary_search_tree.assets/binary_search_tree.png)
## 二元搜尋樹的操作
我們將二元搜尋樹封裝為一個類別 `BinarySearchTree` ,並宣告一個成員變數 `root` ,指向樹的根節點。
### 查詢節點
給定目標節點值 `num` ,可以根據二元搜尋樹的性質來查詢。如下圖所示,我們宣告一個節點 `cur` ,從二元樹的根節點 `root` 出發,迴圈比較節點值 `cur.val``num` 之間的大小關係。
-`cur.val < num` ,說明目標節點在 `cur` 的右子樹中,因此執行 `cur = cur.right`
-`cur.val > num` ,說明目標節點在 `cur` 的左子樹中,因此執行 `cur = cur.left`
-`cur.val = num` ,說明找到目標節點,跳出迴圈並返回該節點。
=== "<1>"
![二元搜尋樹查詢節點示例](binary_search_tree.assets/bst_search_step1.png)
=== "<2>"
![bst_search_step2](binary_search_tree.assets/bst_search_step2.png)
=== "<3>"
![bst_search_step3](binary_search_tree.assets/bst_search_step3.png)
=== "<4>"
![bst_search_step4](binary_search_tree.assets/bst_search_step4.png)
二元搜尋樹的查詢操作與二分搜尋演算法的工作原理一致,都是每輪排除一半情況。迴圈次數最多為二元樹的高度,當二元樹平衡時,使用 $O(\log n)$ 時間。示例程式碼如下:
```src
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{search}
```
### 插入節點
給定一個待插入元素 `num` ,為了保持二元搜尋樹“左子樹 < 根節點 < 右子樹”的性質,插入操作流程如下圖所示。
1. **查詢插入位置**:與查詢操作相似,從根節點出發,根據當前節點值和 `num` 的大小關係迴圈向下搜尋,直到越過葉節點(走訪至 `None` )時跳出迴圈。
2. **在該位置插入節點**:初始化節點 `num` ,將該節點置於 `None` 的位置。
![在二元搜尋樹中插入節點](binary_search_tree.assets/bst_insert.png)
在程式碼實現中,需要注意以下兩點。
- 二元搜尋樹不允許存在重複節點,否則將違反其定義。因此,若待插入節點在樹中已存在,則不執行插入,直接返回。
- 為了實現插入節點,我們需要藉助節點 `pre` 儲存上一輪迴圈的節點。這樣在走訪至 `None` 時,我們可以獲取到其父節點,從而完成節點插入操作。
```src
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{insert}
```
與查詢節點相同,插入節點使用 $O(\log n)$ 時間。
### 刪除節點
先在二元樹中查詢到目標節點,再將其刪除。與插入節點類似,我們需要保證在刪除操作完成後,二元搜尋樹的“左子樹 < 根節點 < 右子樹”的性質仍然滿足。因此,我們根據目標節點的子節點數量,分 0、1 和 2 三種情況,執行對應的刪除節點操作。
如下圖所示,當待刪除節點的度為 $0$ 時,表示該節點是葉節點,可以直接刪除。
![在二元搜尋樹中刪除節點(度為 0 ](binary_search_tree.assets/bst_remove_case1.png)
如下圖所示,當待刪除節點的度為 $1$ 時,將待刪除節點替換為其子節點即可。
![在二元搜尋樹中刪除節點(度為 1 ](binary_search_tree.assets/bst_remove_case2.png)
當待刪除節點的度為 $2$ 時,我們無法直接刪除它,而需要使用一個節點替換該節點。由於要保持二元搜尋樹“左子樹 $<$ 根節點 $<$ 右子樹”的性質,**因此這個節點可以是右子樹的最小節點或左子樹的最大節點**。
假設我們選擇右子樹的最小節點(中序走訪的下一個節點),則刪除操作流程如下圖所示。
1. 找到待刪除節點在“中序走訪序列”中的下一個節點,記為 `tmp`
2.`tmp` 的值覆蓋待刪除節點的值,並在樹中遞迴刪除節點 `tmp`
=== "<1>"
![在二元搜尋樹中刪除節點(度為 2 ](binary_search_tree.assets/bst_remove_case3_step1.png)
=== "<2>"
![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png)
=== "<3>"
![bst_remove_case3_step3](binary_search_tree.assets/bst_remove_case3_step3.png)
=== "<4>"
![bst_remove_case3_step4](binary_search_tree.assets/bst_remove_case3_step4.png)
刪除節點操作同樣使用 $O(\log n)$ 時間,其中查詢待刪除節點需要 $O(\log n)$ 時間,獲取中序走訪後繼節點需要 $O(\log n)$ 時間。示例程式碼如下:
```src
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{remove}
```
### 中序走訪有序
如下圖所示,二元樹的中序走訪遵循“左 $\rightarrow$ 根 $\rightarrow$ 右”的走訪順序,而二元搜尋樹滿足“左子節點 $<$ 根節點 $<$ 右子節點”的大小關係。
這意味著在二元搜尋樹中進行中序走訪時,總是會優先走訪下一個最小節點,從而得出一個重要性質:**二元搜尋樹的中序走訪序列是升序的**。
利用中序走訪升序的性質,我們在二元搜尋樹中獲取有序資料僅需 $O(n)$ 時間,無須進行額外的排序操作,非常高效。
![二元搜尋樹的中序走訪序列](binary_search_tree.assets/bst_inorder_traversal.png)
## 二元搜尋樹的效率
給定一組資料,我們考慮使用陣列或二元搜尋樹儲存。觀察下表,二元搜尋樹的各項操作的時間複雜度都是對數階,具有穩定且高效的效能。只有在高頻新增、低頻查詢刪除資料的場景下,陣列比二元搜尋樹的效率更高。
<p align="center"><id> &nbsp; 陣列與搜尋樹的效率對比 </p>
| | 無序陣列 | 二元搜尋樹 |
| -------- | -------- | ----------- |
| 查詢元素 | $O(n)$ | $O(\log n)$ |
| 插入元素 | $O(1)$ | $O(\log n)$ |
| 刪除元素 | $O(n)$ | $O(\log n)$ |
在理想情況下,二元搜尋樹是“平衡”的,這樣就可以在 $\log n$ 輪迴圈內查詢任意節點。
然而,如果我們在二元搜尋樹中不斷地插入和刪除節點,可能導致二元樹退化為下圖所示的鏈結串列,這時各種操作的時間複雜度也會退化為 $O(n)$ 。
![二元搜尋樹退化](binary_search_tree.assets/bst_degradation.png)
## 二元搜尋樹常見應用
- 用作系統中的多級索引,實現高效的查詢、插入、刪除操作。
- 作為某些搜尋演算法的底層資料結構。
- 用於儲存資料流,以保持其有序狀態。