You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_backtracking/n_queens_problem.md

4.6 KiB

N 皇后问题

!!! question

根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 $n$ 个皇后和一个 $n \times n$ 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。

如下图所示,当 n = 4 时,共可以找到两个解。从回溯算法的角度看,n \times n 大小的棋盘共有 n^2 个格子,给出了所有的选择 choices 。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 state

4 皇后问题的解

本题共有三个约束条件:多个皇后不能在同一行、同一列和同一对角线。值得注意的是,对角线分为主对角线 \ 和副对角线 / 两种。

n 皇后问题的约束条件

皇后放置策略

皇后的数量和棋盘的行数都为 n ,因此我们容易得到第一个推论:棋盘每行都允许且只允许放置一个皇后。这意味着,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。此策略起到了剪枝的作用,它避免了同一行出现多个皇后的所有搜索分支。

下图展示了 4 皇后问题的逐行放置过程。受篇幅限制,下图仅展开了第一行的一个搜索分支。在搜索过程中,我们将不满足列约束和对角线约束的方案都剪枝了。

逐行放置策略

列与对角线剪枝

为了实现根据列约束剪枝,我们可以利用一个长度为 n 的布尔型数组 cols 记录每一列是否有皇后。在每次决定放置前,我们通过 cols 将已有皇后的列剪枝,并在回溯中动态更新 cols 的状态。

那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 (row, col) ,观察矩阵的某条主对角线,我们发现该对角线上所有格子的行索引减列索引相等,即 row - col 为恒定值。换句话说,若两个格子满足 row1 - col1 == row2 - col2 ,则这两个格子一定处在一条主对角线上。

利用该性质,我们可以借助一个数组 diag1 来记录每条主对角线上是否有皇后。注意,n 维方阵 row - col 的范围是 [-n + 1, n - 1] ,因此共有 2n - 1 条主对角线。

处理列约束和对角线约束

同理,次对角线上的所有格子的 row + col 是恒定值。我们可以使用同样的方法,借助数组 diag2 来处理次对角线约束。

代码实现

根据以上分析,我们便可以写出 n 皇后的解题代码。

=== "Java"

```java title="n_queens.java"
[class]{n_queens}-[func]{backtrack}

[class]{n_queens}-[func]{nQueens}
```

=== "C++"

```cpp title="n_queens.cpp"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "Python"

```python title="n_queens.py"
[class]{}-[func]{backtrack}

[class]{}-[func]{n_queens}
```

=== "Go"

```go title="n_queens.go"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "JavaScript"

```javascript title="n_queens.js"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "TypeScript"

```typescript title="n_queens.ts"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "C"

```c title="n_queens.c"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "C#"

```csharp title="n_queens.cs"
[class]{n_queens}-[func]{backtrack}

[class]{n_queens}-[func]{nQueens}
```

=== "Swift"

```swift title="n_queens.swift"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "Zig"

```zig title="n_queens.zig"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

=== "Dart"

```dart title="n_queens.dart"
[class]{}-[func]{backtrack}

[class]{}-[func]{nQueens}
```

复杂度分析

逐行放置 n 次,考虑列约束,则从第一行到最后一行分别有 n, n-1, \cdots, 2, 1 个选择,因此时间复杂度为 O(n!) 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。

state 使用 O(n^2) 空间,cols , diags1 , diags2 皆使用 O(n) 空间。最大递归深度为 n ,使用 O(n) 栈帧空间。因此,空间复杂度为 O(n^2)