|
|
/*
|
|
|
* File: array_binary_tree.rs
|
|
|
* Created Time: 2023-07-25
|
|
|
* Author: night-cruise (2586447362@qq.com)
|
|
|
*/
|
|
|
|
|
|
include!("../include/include.rs");
|
|
|
|
|
|
/* 陣列表示下的二元樹類別 */
|
|
|
struct ArrayBinaryTree {
|
|
|
tree: Vec<Option<i32>>,
|
|
|
}
|
|
|
|
|
|
impl ArrayBinaryTree {
|
|
|
/* 建構子 */
|
|
|
fn new(arr: Vec<Option<i32>>) -> Self {
|
|
|
Self { tree: arr }
|
|
|
}
|
|
|
|
|
|
/* 串列容量 */
|
|
|
fn size(&self) -> i32 {
|
|
|
self.tree.len() as i32
|
|
|
}
|
|
|
|
|
|
/* 獲取索引為 i 節點的值 */
|
|
|
fn val(&self, i: i32) -> Option<i32> {
|
|
|
// 若索引越界,則返回 None ,代表空位
|
|
|
if i < 0 || i >= self.size() {
|
|
|
None
|
|
|
} else {
|
|
|
self.tree[i as usize]
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 獲取索引為 i 節點的左子節點的索引 */
|
|
|
fn left(&self, i: i32) -> i32 {
|
|
|
2 * i + 1
|
|
|
}
|
|
|
|
|
|
/* 獲取索引為 i 節點的右子節點的索引 */
|
|
|
fn right(&self, i: i32) -> i32 {
|
|
|
2 * i + 2
|
|
|
}
|
|
|
|
|
|
/* 獲取索引為 i 節點的父節點的索引 */
|
|
|
fn parent(&self, i: i32) -> i32 {
|
|
|
(i - 1) / 2
|
|
|
}
|
|
|
|
|
|
/* 層序走訪 */
|
|
|
fn level_order(&self) -> Vec<i32> {
|
|
|
let mut res = vec![];
|
|
|
// 直接走訪陣列
|
|
|
for i in 0..self.size() {
|
|
|
if let Some(val) = self.val(i) {
|
|
|
res.push(val)
|
|
|
}
|
|
|
}
|
|
|
res
|
|
|
}
|
|
|
|
|
|
/* 深度優先走訪 */
|
|
|
fn dfs(&self, i: i32, order: &str, res: &mut Vec<i32>) {
|
|
|
if self.val(i).is_none() {
|
|
|
return;
|
|
|
}
|
|
|
let val = self.val(i).unwrap();
|
|
|
// 前序走訪
|
|
|
if order == "pre" {
|
|
|
res.push(val);
|
|
|
}
|
|
|
self.dfs(self.left(i), order, res);
|
|
|
// 中序走訪
|
|
|
if order == "in" {
|
|
|
res.push(val);
|
|
|
}
|
|
|
self.dfs(self.right(i), order, res);
|
|
|
// 後序走訪
|
|
|
if order == "post" {
|
|
|
res.push(val);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* 前序走訪 */
|
|
|
fn pre_order(&self) -> Vec<i32> {
|
|
|
let mut res = vec![];
|
|
|
self.dfs(0, "pre", &mut res);
|
|
|
res
|
|
|
}
|
|
|
|
|
|
/* 中序走訪 */
|
|
|
fn in_order(&self) -> Vec<i32> {
|
|
|
let mut res = vec![];
|
|
|
self.dfs(0, "in", &mut res);
|
|
|
res
|
|
|
}
|
|
|
|
|
|
/* 後序走訪 */
|
|
|
fn post_order(&self) -> Vec<i32> {
|
|
|
let mut res = vec![];
|
|
|
self.dfs(0, "post", &mut res);
|
|
|
res
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Driver Code */
|
|
|
fn main() {
|
|
|
// 初始化二元樹
|
|
|
// 這裡藉助了一個從陣列直接生成二元樹的函式
|
|
|
let arr = vec![
|
|
|
Some(1),
|
|
|
Some(2),
|
|
|
Some(3),
|
|
|
Some(4),
|
|
|
None,
|
|
|
Some(6),
|
|
|
Some(7),
|
|
|
Some(8),
|
|
|
Some(9),
|
|
|
None,
|
|
|
None,
|
|
|
Some(12),
|
|
|
None,
|
|
|
None,
|
|
|
Some(15),
|
|
|
];
|
|
|
|
|
|
let root = tree_node::vec_to_tree(arr.clone()).unwrap();
|
|
|
println!("\n初始化二元樹\n");
|
|
|
println!("二元樹的陣列表示:");
|
|
|
println!(
|
|
|
"[{}]",
|
|
|
arr.iter()
|
|
|
.map(|&val| if let Some(val) = val {
|
|
|
format!("{val}")
|
|
|
} else {
|
|
|
"null".to_string()
|
|
|
})
|
|
|
.collect::<Vec<String>>()
|
|
|
.join(", ")
|
|
|
);
|
|
|
println!("二元樹的鏈結串列表示:");
|
|
|
print_util::print_tree(&root);
|
|
|
|
|
|
// 陣列表示下的二元樹類別
|
|
|
let abt = ArrayBinaryTree::new(arr);
|
|
|
|
|
|
// 訪問節點
|
|
|
let i = 1;
|
|
|
let l = abt.left(i);
|
|
|
let r = abt.right(i);
|
|
|
let p = abt.parent(i);
|
|
|
println!(
|
|
|
"\n當前節點的索引為 {} ,值為 {}",
|
|
|
i,
|
|
|
if let Some(val) = abt.val(i) {
|
|
|
format!("{val}")
|
|
|
} else {
|
|
|
"null".to_string()
|
|
|
}
|
|
|
);
|
|
|
println!(
|
|
|
"其左子節點的索引為 {} ,值為 {}",
|
|
|
l,
|
|
|
if let Some(val) = abt.val(l) {
|
|
|
format!("{val}")
|
|
|
} else {
|
|
|
"null".to_string()
|
|
|
}
|
|
|
);
|
|
|
println!(
|
|
|
"其右子節點的索引為 {} ,值為 {}",
|
|
|
r,
|
|
|
if let Some(val) = abt.val(r) {
|
|
|
format!("{val}")
|
|
|
} else {
|
|
|
"null".to_string()
|
|
|
}
|
|
|
);
|
|
|
println!(
|
|
|
"其父節點的索引為 {} ,值為 {}",
|
|
|
p,
|
|
|
if let Some(val) = abt.val(p) {
|
|
|
format!("{val}")
|
|
|
} else {
|
|
|
"null".to_string()
|
|
|
}
|
|
|
);
|
|
|
|
|
|
// 走訪樹
|
|
|
let mut res = abt.level_order();
|
|
|
println!("\n層序走訪為:{:?}", res);
|
|
|
res = abt.pre_order();
|
|
|
println!("前序走訪為:{:?}", res);
|
|
|
res = abt.in_order();
|
|
|
println!("中序走訪為:{:?}", res);
|
|
|
res = abt.post_order();
|
|
|
println!("後序走訪為:{:?}", res);
|
|
|
}
|