You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
18 KiB
457 lines
18 KiB
---
|
|
comments: true
|
|
---
|
|
|
|
# 8.3 Top-k 问题
|
|
|
|
!!! question
|
|
|
|
给定一个长度为 $n$ 的无序数组 `nums` ,请返回数组中最大的 $k$ 个元素。
|
|
|
|
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
|
|
|
|
## 8.3.1 方法一:遍历选择
|
|
|
|
我们可以进行图 8-6 所示的 $k$ 轮遍历,分别在每轮中提取第 $1$、$2$、$\dots$、$k$ 大的元素,时间复杂度为 $O(nk)$ 。
|
|
|
|
此方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
|
|
|
|
![遍历寻找最大的 k 个元素](top_k.assets/top_k_traversal.png){ class="animation-figure" }
|
|
|
|
<p align="center"> 图 8-6 遍历寻找最大的 k 个元素 </p>
|
|
|
|
!!! tip
|
|
|
|
当 $k = n$ 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
|
|
|
|
## 8.3.2 方法二:排序
|
|
|
|
如图 8-7 所示,我们可以先对数组 `nums` 进行排序,再返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
|
|
|
|
显然,该方法“超额”完成任务了,因为我们只需找出最大的 $k$ 个元素即可,而不需要排序其他元素。
|
|
|
|
![排序寻找最大的 k 个元素](top_k.assets/top_k_sorting.png){ class="animation-figure" }
|
|
|
|
<p align="center"> 图 8-7 排序寻找最大的 k 个元素 </p>
|
|
|
|
## 8.3.3 方法三:堆
|
|
|
|
我们可以基于堆更加高效地解决 Top-k 问题,流程如图 8-8 所示。
|
|
|
|
1. 初始化一个小顶堆,其堆顶元素最小。
|
|
2. 先将数组的前 $k$ 个元素依次入堆。
|
|
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
|
|
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素。
|
|
|
|
=== "<1>"
|
|
![基于堆寻找最大的 k 个元素](top_k.assets/top_k_heap_step1.png){ class="animation-figure" }
|
|
|
|
=== "<2>"
|
|
![top_k_heap_step2](top_k.assets/top_k_heap_step2.png){ class="animation-figure" }
|
|
|
|
=== "<3>"
|
|
![top_k_heap_step3](top_k.assets/top_k_heap_step3.png){ class="animation-figure" }
|
|
|
|
=== "<4>"
|
|
![top_k_heap_step4](top_k.assets/top_k_heap_step4.png){ class="animation-figure" }
|
|
|
|
=== "<5>"
|
|
![top_k_heap_step5](top_k.assets/top_k_heap_step5.png){ class="animation-figure" }
|
|
|
|
=== "<6>"
|
|
![top_k_heap_step6](top_k.assets/top_k_heap_step6.png){ class="animation-figure" }
|
|
|
|
=== "<7>"
|
|
![top_k_heap_step7](top_k.assets/top_k_heap_step7.png){ class="animation-figure" }
|
|
|
|
=== "<8>"
|
|
![top_k_heap_step8](top_k.assets/top_k_heap_step8.png){ class="animation-figure" }
|
|
|
|
=== "<9>"
|
|
![top_k_heap_step9](top_k.assets/top_k_heap_step9.png){ class="animation-figure" }
|
|
|
|
<p align="center"> 图 8-8 基于堆寻找最大的 k 个元素 </p>
|
|
|
|
示例代码如下:
|
|
|
|
=== "Python"
|
|
|
|
```python title="top_k.py"
|
|
def top_k_heap(nums: list[int], k: int) -> list[int]:
|
|
"""基于堆查找数组中最大的 k 个元素"""
|
|
# 初始化小顶堆
|
|
heap = []
|
|
# 将数组的前 k 个元素入堆
|
|
for i in range(k):
|
|
heapq.heappush(heap, nums[i])
|
|
# 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i in range(k, len(nums)):
|
|
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > heap[0]:
|
|
heapq.heappop(heap)
|
|
heapq.heappush(heap, nums[i])
|
|
return heap
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="top_k.cpp"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
|
|
// 初始化小顶堆
|
|
priority_queue<int, vector<int>, greater<int>> heap;
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.push(nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.size(); i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.top()) {
|
|
heap.pop();
|
|
heap.push(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Java"
|
|
|
|
```java title="top_k.java"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
Queue<Integer> topKHeap(int[] nums, int k) {
|
|
// 初始化小顶堆
|
|
Queue<Integer> heap = new PriorityQueue<Integer>();
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.offer(nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.poll();
|
|
heap.offer(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="top_k.cs"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
|
|
// 初始化小顶堆
|
|
PriorityQueue<int, int> heap = new();
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
heap.Enqueue(nums[i], nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.Length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.Peek()) {
|
|
heap.Dequeue();
|
|
heap.Enqueue(nums[i], nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="top_k.go"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
func topKHeap(nums []int, k int) *minHeap {
|
|
// 初始化小顶堆
|
|
h := &minHeap{}
|
|
heap.Init(h)
|
|
// 将数组的前 k 个元素入堆
|
|
for i := 0; i < k; i++ {
|
|
heap.Push(h, nums[i])
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i := k; i < len(nums); i++ {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > h.Top().(int) {
|
|
heap.Pop(h)
|
|
heap.Push(h, nums[i])
|
|
}
|
|
}
|
|
return h
|
|
}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="top_k.swift"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
func topKHeap(nums: [Int], k: Int) -> [Int] {
|
|
// 初始化一个小顶堆,并将前 k 个元素建堆
|
|
var heap = Heap(nums.prefix(k))
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for i in nums.indices.dropFirst(k) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if nums[i] > heap.min()! {
|
|
_ = heap.removeMin()
|
|
heap.insert(nums[i])
|
|
}
|
|
}
|
|
return heap.unordered
|
|
}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="top_k.js"
|
|
/* 元素入堆 */
|
|
function pushMinHeap(maxHeap, val) {
|
|
// 元素取反
|
|
maxHeap.push(-val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
function popMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return -maxHeap.pop();
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
function peekMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return -maxHeap.peek();
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
function getMinHeap(maxHeap) {
|
|
// 元素取反
|
|
return maxHeap.getMaxHeap().map((num) => -num);
|
|
}
|
|
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
function topKHeap(nums, k) {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
const maxHeap = new MaxHeap([]);
|
|
// 将数组的前 k 个元素入堆
|
|
for (let i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (let i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
// 返回堆中元素
|
|
return getMinHeap(maxHeap);
|
|
}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="top_k.ts"
|
|
/* 元素入堆 */
|
|
function pushMinHeap(maxHeap: MaxHeap, val: number): void {
|
|
// 元素取反
|
|
maxHeap.push(-val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
function popMinHeap(maxHeap: MaxHeap): number {
|
|
// 元素取反
|
|
return -maxHeap.pop();
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
function peekMinHeap(maxHeap: MaxHeap): number {
|
|
// 元素取反
|
|
return -maxHeap.peek();
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
function getMinHeap(maxHeap: MaxHeap): number[] {
|
|
// 元素取反
|
|
return maxHeap.getMaxHeap().map((num: number) => -num);
|
|
}
|
|
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
function topKHeap(nums: number[], k: number): number[] {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
const maxHeap = new MaxHeap([]);
|
|
// 将数组的前 k 个元素入堆
|
|
for (let i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (let i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
// 返回堆中元素
|
|
return getMinHeap(maxHeap);
|
|
}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="top_k.dart"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
MinHeap topKHeap(List<int> nums, int k) {
|
|
// 初始化小顶堆,将数组的前 k 个元素入堆
|
|
MinHeap heap = MinHeap(nums.sublist(0, k));
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < nums.length; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.pop();
|
|
heap.push(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="top_k.rs"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
fn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {
|
|
// BinaryHeap 是大顶堆,使用 Reverse 将元素取反,从而实现小顶堆
|
|
let mut heap = BinaryHeap::<Reverse<i32>>::new();
|
|
// 将数组的前 k 个元素入堆
|
|
for &num in nums.iter().take(k) {
|
|
heap.push(Reverse(num));
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for &num in nums.iter().skip(k) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if num > heap.peek().unwrap().0 {
|
|
heap.pop();
|
|
heap.push(Reverse(num));
|
|
}
|
|
}
|
|
heap
|
|
}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="top_k.c"
|
|
/* 元素入堆 */
|
|
void pushMinHeap(MaxHeap *maxHeap, int val) {
|
|
// 元素取反
|
|
push(maxHeap, -val);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
int popMinHeap(MaxHeap *maxHeap) {
|
|
// 元素取反
|
|
return -pop(maxHeap);
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
int peekMinHeap(MaxHeap *maxHeap) {
|
|
// 元素取反
|
|
return -peek(maxHeap);
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
int *getMinHeap(MaxHeap *maxHeap) {
|
|
// 将堆中所有元素取反并存入 res 数组
|
|
int *res = (int *)malloc(maxHeap->size * sizeof(int));
|
|
for (int i = 0; i < maxHeap->size; i++) {
|
|
res[i] = -maxHeap->data[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
int *getMinHeap(MaxHeap *maxHeap) {
|
|
// 将堆中所有元素取反并存入 res 数组
|
|
int *res = (int *)malloc(maxHeap->size * sizeof(int));
|
|
for (int i = 0; i < maxHeap->size; i++) {
|
|
res[i] = -maxHeap->data[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// 基于堆查找数组中最大的 k 个元素的函数
|
|
int *topKHeap(int *nums, int sizeNums, int k) {
|
|
// 初始化小顶堆
|
|
// 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
|
|
int *empty = (int *)malloc(0);
|
|
MaxHeap *maxHeap = newMaxHeap(empty, 0);
|
|
// 将数组的前 k 个元素入堆
|
|
for (int i = 0; i < k; i++) {
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (int i = k; i < sizeNums; i++) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > peekMinHeap(maxHeap)) {
|
|
popMinHeap(maxHeap);
|
|
pushMinHeap(maxHeap, nums[i]);
|
|
}
|
|
}
|
|
int *res = getMinHeap(maxHeap);
|
|
// 释放内存
|
|
delMaxHeap(maxHeap);
|
|
return res;
|
|
}
|
|
```
|
|
|
|
=== "Kotlin"
|
|
|
|
```kotlin title="top_k.kt"
|
|
/* 基于堆查找数组中最大的 k 个元素 */
|
|
fun topKHeap(nums: IntArray, k: Int): Queue<Int> {
|
|
// 初始化小顶堆
|
|
val heap = PriorityQueue<Int>()
|
|
// 将数组的前 k 个元素入堆
|
|
for (i in 0..<k) {
|
|
heap.offer(nums[i])
|
|
}
|
|
// 从第 k+1 个元素开始,保持堆的长度为 k
|
|
for (i in k..<nums.size) {
|
|
// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
|
|
if (nums[i] > heap.peek()) {
|
|
heap.poll()
|
|
heap.offer(nums[i])
|
|
}
|
|
}
|
|
return heap
|
|
}
|
|
```
|
|
|
|
=== "Ruby"
|
|
|
|
```ruby title="top_k.rb"
|
|
[class]{}-[func]{top_k_heap}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="top_k.zig"
|
|
[class]{}-[func]{topKHeap}
|
|
```
|
|
|
|
??? pythontutor "可视化运行"
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D,%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E4%BA%8E%E5%A0%86%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%86%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%8D%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E4%BB%8E%E7%AC%AC%20k%2B1%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%BC%80%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%9A%84%E9%95%BF%E5%BA%A6%E4%B8%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k,%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E4%BA%8E%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E5%B0%86%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E3%80%81%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%207,%206,%203,%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums,%20k%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=import%20heapq%0A%0Adef%20top_k_heap%28nums%3A%20list%5Bint%5D,%20k%3A%20int%29%20-%3E%20list%5Bint%5D%3A%0A%20%20%20%20%22%22%22%E5%9F%BA%E4%BA%8E%E5%A0%86%E6%9F%A5%E6%89%BE%E6%95%B0%E7%BB%84%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20heap%20%3D%20%5B%5D%0A%20%20%20%20%23%20%E5%B0%86%E6%95%B0%E7%BB%84%E7%9A%84%E5%89%8D%20k%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20for%20i%20in%20range%28k%29%3A%0A%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20%23%20%E4%BB%8E%E7%AC%AC%20k%2B1%20%E4%B8%AA%E5%85%83%E7%B4%A0%E5%BC%80%E5%A7%8B%EF%BC%8C%E4%BF%9D%E6%8C%81%E5%A0%86%E7%9A%84%E9%95%BF%E5%BA%A6%E4%B8%BA%20k%0A%20%20%20%20for%20i%20in%20range%28k,%20len%28nums%29%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%A4%A7%E4%BA%8E%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%EF%BC%8C%E5%88%99%E5%B0%86%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%E3%80%81%E5%BD%93%E5%89%8D%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20%20%20%20%20if%20nums%5Bi%5D%20%3E%20heap%5B0%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappop%28heap%29%0A%20%20%20%20%20%20%20%20%20%20%20%20heapq.heappush%28heap,%20nums%5Bi%5D%29%0A%20%20%20%20return%20heap%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1,%207,%206,%203,%202%5D%0A%20%20%20%20k%20%3D%203%0A%0A%20%20%20%20res%20%3D%20top_k_heap%28nums,%20k%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>
|
|
|
|
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
|
|
|
|
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 $k$ 个元素的动态更新。
|