|
|
/**
|
|
|
* File: avl_tree.java
|
|
|
* Created Time: 2022-12-10
|
|
|
* Author: Krahets (krahets@163.com)
|
|
|
*/
|
|
|
|
|
|
package chapter_tree;
|
|
|
|
|
|
import include.*;
|
|
|
|
|
|
/* AVL 树 */
|
|
|
class AVLTree {
|
|
|
TreeNode root; // 根节点
|
|
|
|
|
|
/* 获取结点高度 */
|
|
|
public int height(TreeNode node) {
|
|
|
// 空结点高度为 -1 ,叶结点高度为 0
|
|
|
return node == null ? -1 : node.height;
|
|
|
}
|
|
|
|
|
|
/* 更新结点高度 */
|
|
|
private void updateHeight(TreeNode node) {
|
|
|
// 结点高度等于最高子树高度 + 1
|
|
|
node.height = Math.max(height(node.left), height(node.right)) + 1;
|
|
|
}
|
|
|
|
|
|
/* 获取平衡因子 */
|
|
|
public int balanceFactor(TreeNode node) {
|
|
|
// 空结点平衡因子为 0
|
|
|
if (node == null) return 0;
|
|
|
// 结点平衡因子 = 左子树高度 - 右子树高度
|
|
|
return height(node.left) - height(node.right);
|
|
|
}
|
|
|
|
|
|
/* 右旋操作 */
|
|
|
private TreeNode rightRotate(TreeNode node) {
|
|
|
TreeNode child = node.left;
|
|
|
TreeNode grandChild = child.right;
|
|
|
// 以 child 为原点,将 node 向右旋转
|
|
|
child.right = node;
|
|
|
node.left = grandChild;
|
|
|
// 更新结点高度
|
|
|
updateHeight(node);
|
|
|
updateHeight(child);
|
|
|
// 返回旋转后子树的根节点
|
|
|
return child;
|
|
|
}
|
|
|
|
|
|
/* 左旋操作 */
|
|
|
private TreeNode leftRotate(TreeNode node) {
|
|
|
TreeNode child = node.right;
|
|
|
TreeNode grandChild = child.left;
|
|
|
// 以 child 为原点,将 node 向左旋转
|
|
|
child.left = node;
|
|
|
node.right = grandChild;
|
|
|
// 更新结点高度
|
|
|
updateHeight(node);
|
|
|
updateHeight(child);
|
|
|
// 返回旋转后子树的根节点
|
|
|
return child;
|
|
|
}
|
|
|
|
|
|
/* 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
private TreeNode rotate(TreeNode node) {
|
|
|
// 获取结点 node 的平衡因子
|
|
|
int balanceFactor = balanceFactor(node);
|
|
|
// 左偏树
|
|
|
if (balanceFactor > 1) {
|
|
|
if (balanceFactor(node.left) >= 0) {
|
|
|
// 右旋
|
|
|
return rightRotate(node);
|
|
|
} else {
|
|
|
// 先左旋后右旋
|
|
|
node.left = leftRotate(node.left);
|
|
|
return rightRotate(node);
|
|
|
}
|
|
|
}
|
|
|
// 右偏树
|
|
|
if (balanceFactor < -1) {
|
|
|
if (balanceFactor(node.right) <= 0) {
|
|
|
// 左旋
|
|
|
return leftRotate(node);
|
|
|
} else {
|
|
|
// 先右旋后左旋
|
|
|
node.right = rightRotate(node.right);
|
|
|
return leftRotate(node);
|
|
|
}
|
|
|
}
|
|
|
// 平衡树,无需旋转,直接返回
|
|
|
return node;
|
|
|
}
|
|
|
|
|
|
/* 插入结点 */
|
|
|
public TreeNode insert(int val) {
|
|
|
root = insertHelper(root, val);
|
|
|
return root;
|
|
|
}
|
|
|
|
|
|
/* 递归插入结点(辅助函数) */
|
|
|
private TreeNode insertHelper(TreeNode node, int val) {
|
|
|
if (node == null) return new TreeNode(val);
|
|
|
/* 1. 查找插入位置,并插入结点 */
|
|
|
if (val < node.val)
|
|
|
node.left = insertHelper(node.left, val);
|
|
|
else if (val > node.val)
|
|
|
node.right = insertHelper(node.right, val);
|
|
|
else
|
|
|
return node; // 重复结点不插入,直接返回
|
|
|
updateHeight(node); // 更新结点高度
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
node = rotate(node);
|
|
|
// 返回子树的根节点
|
|
|
return node;
|
|
|
}
|
|
|
|
|
|
/* 删除结点 */
|
|
|
public TreeNode remove(int val) {
|
|
|
root = removeHelper(root, val);
|
|
|
return root;
|
|
|
}
|
|
|
|
|
|
/* 递归删除结点(辅助函数) */
|
|
|
private TreeNode removeHelper(TreeNode node, int val) {
|
|
|
if (node == null) return null;
|
|
|
/* 1. 查找结点,并删除之 */
|
|
|
if (val < node.val)
|
|
|
node.left = removeHelper(node.left, val);
|
|
|
else if (val > node.val)
|
|
|
node.right = removeHelper(node.right, val);
|
|
|
else {
|
|
|
if (node.left == null || node.right == null) {
|
|
|
TreeNode child = node.left != null ? node.left : node.right;
|
|
|
// 子结点数量 = 0 ,直接删除 node 并返回
|
|
|
if (child == null)
|
|
|
return null;
|
|
|
// 子结点数量 = 1 ,直接删除 node
|
|
|
else
|
|
|
node = child;
|
|
|
} else {
|
|
|
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
|
|
TreeNode temp = getInOrderNext(node.right);
|
|
|
node.right = removeHelper(node.right, temp.val);
|
|
|
node.val = temp.val;
|
|
|
}
|
|
|
}
|
|
|
updateHeight(node); // 更新结点高度
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
node = rotate(node);
|
|
|
// 返回子树的根节点
|
|
|
return node;
|
|
|
}
|
|
|
|
|
|
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
|
|
private TreeNode getInOrderNext(TreeNode node) {
|
|
|
if (node == null) return node;
|
|
|
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
|
|
while (node.left != null) {
|
|
|
node = node.left;
|
|
|
}
|
|
|
return node;
|
|
|
}
|
|
|
|
|
|
/* 查找结点 */
|
|
|
public TreeNode search(int val) {
|
|
|
TreeNode cur = root;
|
|
|
// 循环查找,越过叶结点后跳出
|
|
|
while (cur != null) {
|
|
|
// 目标结点在 cur 的右子树中
|
|
|
if (cur.val < val)
|
|
|
cur = cur.right;
|
|
|
// 目标结点在 cur 的左子树中
|
|
|
else if (cur.val > val)
|
|
|
cur = cur.left;
|
|
|
// 找到目标结点,跳出循环
|
|
|
else
|
|
|
break;
|
|
|
}
|
|
|
// 返回目标结点
|
|
|
return cur;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public class avl_tree {
|
|
|
static void testInsert(AVLTree tree, int val) {
|
|
|
tree.insert(val);
|
|
|
System.out.println("\n插入结点 " + val + " 后,AVL 树为");
|
|
|
PrintUtil.printTree(tree.root);
|
|
|
}
|
|
|
|
|
|
static void testRemove(AVLTree tree, int val) {
|
|
|
tree.remove(val);
|
|
|
System.out.println("\n删除结点 " + val + " 后,AVL 树为");
|
|
|
PrintUtil.printTree(tree.root);
|
|
|
}
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
/* 初始化空 AVL 树 */
|
|
|
AVLTree avlTree = new AVLTree();
|
|
|
|
|
|
/* 插入结点 */
|
|
|
// 请关注插入结点后,AVL 树是如何保持平衡的
|
|
|
testInsert(avlTree, 1);
|
|
|
testInsert(avlTree, 2);
|
|
|
testInsert(avlTree, 3);
|
|
|
testInsert(avlTree, 4);
|
|
|
testInsert(avlTree, 5);
|
|
|
testInsert(avlTree, 8);
|
|
|
testInsert(avlTree, 7);
|
|
|
testInsert(avlTree, 9);
|
|
|
testInsert(avlTree, 10);
|
|
|
testInsert(avlTree, 6);
|
|
|
|
|
|
/* 插入重复结点 */
|
|
|
testInsert(avlTree, 7);
|
|
|
|
|
|
/* 删除结点 */
|
|
|
// 请关注删除结点后,AVL 树是如何保持平衡的
|
|
|
testRemove(avlTree, 8); // 删除度为 0 的结点
|
|
|
testRemove(avlTree, 5); // 删除度为 1 的结点
|
|
|
testRemove(avlTree, 4); // 删除度为 2 的结点
|
|
|
|
|
|
/* 查询结点 */
|
|
|
TreeNode node = avlTree.search(7);
|
|
|
System.out.println("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
|
|
|
}
|
|
|
}
|