You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/docs/chapter_greedy/max_capacity_problem.md

4.6 KiB

最大容量問題

!!! question

輸入一個陣列 $ht$ ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。

容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。

請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如下圖所示。

最大容量問題的示例資料

容器由任意兩個隔板圍成,因此本題的狀態為兩個隔板的索引,記為 [i, j]

根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 cap[i, j] ,則可得計算公式:


cap[i, j] = \min(ht[i], ht[j]) \times (j - i)

設陣列長度為 n ,兩個隔板的組合數量(狀態總數)為 C_n^2 = \frac{n(n - 1)}{2} 個。最直接地,我們可以窮舉所有狀態,從而求得最大容量,時間複雜度為 O(n^2)

貪婪策略確定

這道題還有更高效率的解法。如下圖所示,現選取一個狀態 [i, j] ,其滿足索引 i < j 且高度 ht[i] < ht[j] ,即 i 為短板、j 為長板。

初始狀態

如下圖所示,若此時將長板 j 向短板 i 靠近,則容量一定變小

這是因為在移動長板 j 後,寬度 j-i 肯定變小;而高度由短板決定,因此高度只可能不變( i 仍為短板)或變小(移動後的 j 成為短板)。

向內移動長板後的狀態

反向思考,我們只有向內收縮短板 i ,才有可能使容量變大。因為雖然寬度一定變小,但高度可能會變大(移動後的短板 i 可能會變長)。例如在下圖中,移動短板後面積變大。

向內移動短板後的狀態

由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。

下圖展示了貪婪策略的執行過程。

  1. 初始狀態下,指標 ij 分列陣列兩端。
  2. 計算當前狀態的容量 cap[i, j] ,並更新最大容量。
  3. 比較板 i 和 板 j 的高度,並將短板向內移動一格。
  4. 迴圈執行第 2. 步和第 3. 步,直至 ij 相遇時結束。

=== "<1>" 最大容量問題的貪婪過程

=== "<2>" max_capacity_greedy_step2

=== "<3>" max_capacity_greedy_step3

=== "<4>" max_capacity_greedy_step4

=== "<5>" max_capacity_greedy_step5

=== "<6>" max_capacity_greedy_step6

=== "<7>" max_capacity_greedy_step7

=== "<8>" max_capacity_greedy_step8

=== "<9>" max_capacity_greedy_step9

程式碼實現

程式碼迴圈最多 n 輪,因此時間複雜度為 O(n)

變數 ijres 使用常數大小的額外空間,因此空間複雜度為 O(1)

[file]{max_capacity}-[class]{}-[func]{max_capacity}

正確性證明

之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。

比如在狀態 cap[i, j] 下,i 為短板、j 為長板。若貪婪地將短板 i 向內移動一格,會導致下圖所示的狀態被“跳過”。這意味著之後無法驗證這些狀態的容量大小


cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]

移動短板導致被跳過的狀態

觀察發現,這些被跳過的狀態實際上就是將長板 j 向內移動的所有狀態。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,跳過它們不會導致錯過最優解

以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。