You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/docs/chapter_searching/binary_search_edge.md

287 lines
8.8 KiB

---
comments: true
---
# 10.3   Binary search boundaries
## 10.3.1   Find the left boundary
!!! question
Given a sorted array `nums` of length $n$, which may contain duplicate elements, return the index of the leftmost element `target`. If the element is not present in the array, return $-1$.
Recall the method of binary search for an insertion point, after the search is completed, $i$ points to the leftmost `target`, **thus searching for the insertion point is essentially searching for the index of the leftmost `target`**.
Consider implementing the search for the left boundary using the function for finding an insertion point. Note that the array might not contain `target`, which could lead to the following two results:
- The index $i$ of the insertion point is out of bounds.
- The element `nums[i]` is not equal to `target`.
In these cases, simply return $-1$. The code is as follows:
=== "Python"
```python title="binary_search_edge.py"
def binary_search_left_edge(nums: list[int], target: int) -> int:
"""Binary search for the leftmost target"""
# Equivalent to finding the insertion point of target
i = binary_search_insertion(nums, target)
# Did not find target, thus return -1
if i == len(nums) or nums[i] != target:
return -1
# Found target, return index i
return i
```
=== "C++"
```cpp title="binary_search_edge.cpp"
/* Binary search for the leftmost target */
int binarySearchLeftEdge(vector<int> &nums, int target) {
// Equivalent to finding the insertion point of target
int i = binarySearchInsertion(nums, target);
// Did not find target, thus return -1
if (i == nums.size() || nums[i] != target) {
return -1;
}
// Found target, return index i
return i;
}
```
=== "Java"
```java title="binary_search_edge.java"
/* Binary search for the leftmost target */
int binarySearchLeftEdge(int[] nums, int target) {
// Equivalent to finding the insertion point of target
int i = binary_search_insertion.binarySearchInsertion(nums, target);
// Did not find target, thus return -1
if (i == nums.length || nums[i] != target) {
return -1;
}
// Found target, return index i
return i;
}
```
=== "C#"
```csharp title="binary_search_edge.cs"
[class]{binary_search_edge}-[func]{BinarySearchLeftEdge}
```
=== "Go"
```go title="binary_search_edge.go"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Swift"
```swift title="binary_search_edge.swift"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "JS"
```javascript title="binary_search_edge.js"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "TS"
```typescript title="binary_search_edge.ts"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Dart"
```dart title="binary_search_edge.dart"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Rust"
```rust title="binary_search_edge.rs"
[class]{}-[func]{binary_search_left_edge}
```
=== "C"
```c title="binary_search_edge.c"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Kotlin"
```kotlin title="binary_search_edge.kt"
[class]{}-[func]{binarySearchLeftEdge}
```
=== "Ruby"
```ruby title="binary_search_edge.rb"
[class]{}-[func]{binary_search_left_edge}
```
=== "Zig"
```zig title="binary_search_edge.zig"
[class]{}-[func]{binarySearchLeftEdge}
```
## 10.3.2 &nbsp; Find the right boundary
So how do we find the rightmost `target`? The most straightforward way is to modify the code, replacing the pointer contraction operation in the case of `nums[m] == target`. The code is omitted here, but interested readers can implement it on their own.
Below we introduce two more cunning methods.
### 1. &nbsp; Reusing the search for the left boundary
In fact, we can use the function for finding the leftmost element to find the rightmost element, specifically by **transforming the search for the rightmost `target` into a search for the leftmost `target + 1`**.
As shown in Figure 10-7, after the search is completed, the pointer $i$ points to the leftmost `target + 1` (if it exists), while $j$ points to the rightmost `target`, **thus returning $j$ is sufficient**.
![Transforming the search for the right boundary into the search for the left boundary](binary_search_edge.assets/binary_search_right_edge_by_left_edge.png){ class="animation-figure" }
<p align="center"> Figure 10-7 &nbsp; Transforming the search for the right boundary into the search for the left boundary </p>
Please note, the insertion point returned is $i$, therefore, it should be subtracted by $1$ to obtain $j$:
=== "Python"
```python title="binary_search_edge.py"
def binary_search_right_edge(nums: list[int], target: int) -> int:
"""Binary search for the rightmost target"""
# Convert to finding the leftmost target + 1
i = binary_search_insertion(nums, target + 1)
# j points to the rightmost target, i points to the first element greater than target
j = i - 1
# Did not find target, thus return -1
if j == -1 or nums[j] != target:
return -1
# Found target, return index j
return j
```
=== "C++"
```cpp title="binary_search_edge.cpp"
/* Binary search for the rightmost target */
int binarySearchRightEdge(vector<int> &nums, int target) {
// Convert to finding the leftmost target + 1
int i = binarySearchInsertion(nums, target + 1);
// j points to the rightmost target, i points to the first element greater than target
int j = i - 1;
// Did not find target, thus return -1
if (j == -1 || nums[j] != target) {
return -1;
}
// Found target, return index j
return j;
}
```
=== "Java"
```java title="binary_search_edge.java"
/* Binary search for the rightmost target */
int binarySearchRightEdge(int[] nums, int target) {
// Convert to finding the leftmost target + 1
int i = binary_search_insertion.binarySearchInsertion(nums, target + 1);
// j points to the rightmost target, i points to the first element greater than target
int j = i - 1;
// Did not find target, thus return -1
if (j == -1 || nums[j] != target) {
return -1;
}
// Found target, return index j
return j;
}
```
=== "C#"
```csharp title="binary_search_edge.cs"
[class]{binary_search_edge}-[func]{BinarySearchRightEdge}
```
=== "Go"
```go title="binary_search_edge.go"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Swift"
```swift title="binary_search_edge.swift"
[class]{}-[func]{binarySearchRightEdge}
```
=== "JS"
```javascript title="binary_search_edge.js"
[class]{}-[func]{binarySearchRightEdge}
```
=== "TS"
```typescript title="binary_search_edge.ts"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Dart"
```dart title="binary_search_edge.dart"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Rust"
```rust title="binary_search_edge.rs"
[class]{}-[func]{binary_search_right_edge}
```
=== "C"
```c title="binary_search_edge.c"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Kotlin"
```kotlin title="binary_search_edge.kt"
[class]{}-[func]{binarySearchRightEdge}
```
=== "Ruby"
```ruby title="binary_search_edge.rb"
[class]{}-[func]{binary_search_right_edge}
```
=== "Zig"
```zig title="binary_search_edge.zig"
[class]{}-[func]{binarySearchRightEdge}
```
### 2. &nbsp; Transforming into an element search
We know that when the array does not contain `target`, $i$ and $j$ will eventually point to the first element greater and smaller than `target` respectively.
Thus, as shown in Figure 10-8, we can construct an element that does not exist in the array, to search for the left and right boundaries.
- To find the leftmost `target`: it can be transformed into searching for `target - 0.5`, and return the pointer $i$.
- To find the rightmost `target`: it can be transformed into searching for `target + 0.5`, and return the pointer $j$.
![Transforming the search for boundaries into the search for an element](binary_search_edge.assets/binary_search_edge_by_element.png){ class="animation-figure" }
<p align="center"> Figure 10-8 &nbsp; Transforming the search for boundaries into the search for an element </p>
The code is omitted here, but two points are worth noting.
- The given array does not contain decimals, meaning we do not need to worry about how to handle equal situations.
- Since this method introduces decimals, the variable `target` in the function needs to be changed to a floating point type (no change needed in Python).