35 KiB
时间复杂度
运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢?
- 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
- 评估各种计算操作所需的运行时间,例如加法操作
+
需要 1 ns ,乘法操作*
需要 10 ns ,打印操作print()
需要 5 ns 等。 - 统计代码中所有的计算操作,并将所有操作的执行时间求和,从而得到运行时间。
例如在以下代码中,输入数据大小为 n
:
=== "Python"
```python title=""
# 在某运行平台下
def algorithm(n: int):
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 循环 n 次
for _ in range(n): # 1 ns
print(0) # 5 ns
```
=== "C++"
```cpp title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns
cout << 0 << endl; // 5 ns
}
}
```
=== "Java"
```java title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns
System.out.println(0); // 5 ns
}
}
```
=== "C#"
```csharp title=""
// 在某运行平台下
void Algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns
Console.WriteLine(0); // 5 ns
}
}
```
=== "Go"
```go title=""
// 在某运行平台下
func algorithm(n int) {
a := 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for i := 0; i < n; i++ { // 1 ns
fmt.Println(a) // 5 ns
}
}
```
=== "Swift"
```swift title=""
// 在某运行平台下
func algorithm(n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for _ in 0 ..< n { // 1 ns
print(0) // 5 ns
}
}
```
=== "JS"
```javascript title=""
// 在某运行平台下
function algorithm(n) {
var a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns
console.log(0); // 5 ns
}
}
```
=== "TS"
```typescript title=""
// 在某运行平台下
function algorithm(n: number): void {
var a: number = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns
console.log(0); // 5 ns
}
}
```
=== "Dart"
```dart title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns
print(0); // 5 ns
}
}
```
=== "Rust"
```rust title=""
// 在某运行平台下
fn algorithm(n: i32) {
let mut a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for _ in 0..n { // 1 ns
println!("{}", 0); // 5 ns
}
}
```
=== "C"
```c title=""
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns
printf("%d", 0); // 5 ns
}
}
```
=== "Kotlin"
```kotlin title=""
// 在某运行平台下
fun algorithm(n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for (i in 0..<n) { // 1 ns
println(0) // 5 ns
}
}
```
=== "Ruby"
```ruby title=""
# 在某运行平台下
def algorithm(n)
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 循环 n 次
(0...n).each do # 1 ns
puts 0 # 5 ns
end
end
```
=== "Zig"
```zig title=""
// 在某运行平台下
fn algorithm(n: usize) void {
var a: i32 = 2; // 1 ns
a += 1; // 1 ns
a *= 2; // 10 ns
// 循环 n 次
for (0..n) |_| { // 1 ns
std.debug.print("{}\n", .{0}); // 5 ns
}
}
```
根据以上方法,可以得到算法的运行时间为 (6n + 12)
ns :
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
但实际上,统计算法的运行时间既不合理也不现实。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
统计时间增长趋势
时间复杂度分析统计的不是算法运行时间,而是算法运行时间随着数据量变大时的增长趋势。
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 n
,给定三个算法 A
、B
和 C
:
=== "Python"
```python title=""
# 算法 A 的时间复杂度:常数阶
def algorithm_A(n: int):
print(0)
# 算法 B 的时间复杂度:线性阶
def algorithm_B(n: int):
for _ in range(n):
print(0)
# 算法 C 的时间复杂度:常数阶
def algorithm_C(n: int):
for _ in range(1000000):
print(0)
```
=== "C++"
```cpp title=""
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
cout << 0 << endl;
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
cout << 0 << endl;
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
cout << 0 << endl;
}
}
```
=== "Java"
```java title=""
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
System.out.println(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
System.out.println(0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
System.out.println(0);
}
}
```
=== "C#"
```csharp title=""
// 算法 A 的时间复杂度:常数阶
void AlgorithmA(int n) {
Console.WriteLine(0);
}
// 算法 B 的时间复杂度:线性阶
void AlgorithmB(int n) {
for (int i = 0; i < n; i++) {
Console.WriteLine(0);
}
}
// 算法 C 的时间复杂度:常数阶
void AlgorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
Console.WriteLine(0);
}
}
```
=== "Go"
```go title=""
// 算法 A 的时间复杂度:常数阶
func algorithm_A(n int) {
fmt.Println(0)
}
// 算法 B 的时间复杂度:线性阶
func algorithm_B(n int) {
for i := 0; i < n; i++ {
fmt.Println(0)
}
}
// 算法 C 的时间复杂度:常数阶
func algorithm_C(n int) {
for i := 0; i < 1000000; i++ {
fmt.Println(0)
}
}
```
=== "Swift"
```swift title=""
// 算法 A 的时间复杂度:常数阶
func algorithmA(n: Int) {
print(0)
}
// 算法 B 的时间复杂度:线性阶
func algorithmB(n: Int) {
for _ in 0 ..< n {
print(0)
}
}
// 算法 C 的时间复杂度:常数阶
func algorithmC(n: Int) {
for _ in 0 ..< 1_000_000 {
print(0)
}
}
```
=== "JS"
```javascript title=""
// 算法 A 的时间复杂度:常数阶
function algorithm_A(n) {
console.log(0);
}
// 算法 B 的时间复杂度:线性阶
function algorithm_B(n) {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 的时间复杂度:常数阶
function algorithm_C(n) {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
```
=== "TS"
```typescript title=""
// 算法 A 的时间复杂度:常数阶
function algorithm_A(n: number): void {
console.log(0);
}
// 算法 B 的时间复杂度:线性阶
function algorithm_B(n: number): void {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 的时间复杂度:常数阶
function algorithm_C(n: number): void {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
```
=== "Dart"
```dart title=""
// 算法 A 的时间复杂度:常数阶
void algorithmA(int n) {
print(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithmB(int n) {
for (int i = 0; i < n; i++) {
print(0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
print(0);
}
}
```
=== "Rust"
```rust title=""
// 算法 A 的时间复杂度:常数阶
fn algorithm_A(n: i32) {
println!("{}", 0);
}
// 算法 B 的时间复杂度:线性阶
fn algorithm_B(n: i32) {
for _ in 0..n {
println!("{}", 0);
}
}
// 算法 C 的时间复杂度:常数阶
fn algorithm_C(n: i32) {
for _ in 0..1000000 {
println!("{}", 0);
}
}
```
=== "C"
```c title=""
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
printf("%d", 0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
printf("%d", 0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
printf("%d", 0);
}
}
```
=== "Kotlin"
```kotlin title=""
// 算法 A 的时间复杂度:常数阶
fun algoritm_A(n: Int) {
println(0)
}
// 算法 B 的时间复杂度:线性阶
fun algorithm_B(n: Int) {
for (i in 0..<n){
println(0)
}
}
// 算法 C 的时间复杂度:常数阶
fun algorithm_C(n: Int) {
for (i in 0..<1000000) {
println(0)
}
}
```
=== "Ruby"
```ruby title=""
# 算法 A 的时间复杂度:常数阶
def algorithm_A(n)
puts 0
end
# 算法 B 的时间复杂度:线性阶
def algorithm_B(n)
(0...n).each { puts 0 }
end
# 算法 C 的时间复杂度:常数阶
def algorithm_C(n)
(0...1_000_000).each { puts 0 }
end
```
=== "Zig"
```zig title=""
// 算法 A 的时间复杂度:常数阶
fn algorithm_A(n: usize) void {
_ = n;
std.debug.print("{}\n", .{0});
}
// 算法 B 的时间复杂度:线性阶
fn algorithm_B(n: i32) void {
for (0..n) |_| {
std.debug.print("{}\n", .{0});
}
}
// 算法 C 的时间复杂度:常数阶
fn algorithm_C(n: i32) void {
_ = n;
for (0..1000000) |_| {
std.debug.print("{}\n", .{0});
}
}
```
下图展示了以上三个算法函数的时间复杂度。
- 算法
A
只有1
个打印操作,算法运行时间不随着n
增大而增长。我们称此算法的时间复杂度为“常数阶”。 - 算法
B
中的打印操作需要循环n
次,算法运行时间随着n
增大呈线性增长。此算法的时间复杂度被称为“线性阶”。 - 算法
C
中的打印操作需要循环1000000
次,虽然运行时间很长,但它与输入数据大小n
无关。因此C
的时间复杂度和A
相同,仍为“常数阶”。
相较于直接统计算法的运行时间,时间复杂度分析有哪些特点呢?
- 时间复杂度能够有效评估算法效率。例如,算法
B
的运行时间呈线性增长,在n > 1
时比算法A
更慢,在n > 1000000
时比算法C
更慢。事实上,只要输入数据大小n
足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。 - 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
- 时间复杂度也存在一定的局限性。例如,尽管算法
A
和C
的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法B
的时间复杂度比C
高,但在输入数据大小n
较小时,算法B
明显优于算法C
。对于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。
函数渐近上界
给定一个输入大小为 n
的函数:
=== "Python"
```python title=""
def algorithm(n: int):
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 循环 n 次
for i in range(n): # +1
print(0) # +1
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
cout << 0 << endl; // +1
}
}
```
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
System.out.println(0); // +1
}
}
```
=== "C#"
```csharp title=""
void Algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
Console.WriteLine(0); // +1
}
}
```
=== "Go"
```go title=""
func algorithm(n int) {
a := 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for i := 0; i < n; i++ { // +1
fmt.Println(a) // +1
}
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for _ in 0 ..< n { // +1
print(0) // +1
}
}
```
=== "JS"
```javascript title=""
function algorithm(n) {
var a = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
console.log(0); // +1
}
}
```
=== "TS"
```typescript title=""
function algorithm(n: number): void{
var a: number = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
console.log(0); // +1
}
}
```
=== "Dart"
```dart title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
print(0); // +1
}
}
```
=== "Rust"
```rust title=""
fn algorithm(n: i32) {
let mut a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for _ in 0..n { // +1(每轮都执行 i ++)
println!("{}", 0); // +1
}
}
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
printf("%d", 0); // +1
}
}
```
=== "Kotlin"
```kotlin title=""
fun algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for (i in 0..<n) { // +1(每轮都执行 i ++)
println(0) // +1
}
}
```
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 循环 n 次
(0...n).each do # +1
puts 0 # +1
end
end
```
=== "Zig"
```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for (0..n) |_| { // +1(每轮都执行 i ++)
std.debug.print("{}\n", .{0}); // +1
}
}
```
设算法的操作数量是一个关于输入数据大小 n
的函数,记为 T(n)
,则以上函数的操作数量为:
T(n) = 3 + 2n
T(n)
是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。
我们将线性阶的时间复杂度记为 O(n)
,这个数学符号称为大 O
记号(big-O
notation),表示函数 T(n)
的渐近上界(asymptotic upper bound)。
时间复杂度分析本质上是计算“操作数量 T(n)
”的渐近上界,它具有明确的数学定义。
!!! note "函数渐近上界"
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $T(n) = O(f(n))$ 。
如下图所示,计算渐近上界就是寻找一个函数 f(n)
,使得当 n
趋向于无穷大时,T(n)
和 f(n)
处于相同的增长级别,仅相差一个常数项 c
的倍数。
推算方法
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。我们可以先掌握推算方法,在不断的实践中,就可以逐渐领悟其数学意义。
根据定义,确定 f(n)
之后,我们便可得到时间复杂度 O(f(n))
。那么如何确定渐近上界 f(n)
呢?总体分为两步:首先统计操作数量,然后判断渐近上界。
第一步:统计操作数量
针对代码,逐行从上到下计算即可。然而,由于上述 c \cdot f(n)
中的常数项 c
可以取任意大小,因此操作数量 T(n)
中的各种系数、常数项都可以忽略。根据此原则,可以总结出以下计数简化技巧。
- 忽略
T(n)
中的常数项。因为它们都与n
无关,所以对时间复杂度不产生影响。 - 省略所有系数。例如,循环
2n
次、5n + 1
次等,都可以简化记为n
次,因为n
前面的系数对时间复杂度没有影响。 - 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第
1.
点和第2.
点的技巧。
给定一个函数,我们可以用上述技巧来统计操作数量:
=== "Python"
```python title=""
def algorithm(n: int):
a = 1 # +0(技巧 1)
a = a + n # +0(技巧 1)
# +n(技巧 2)
for i in range(5 * n + 1):
print(0)
# +n*n(技巧 3)
for i in range(2 * n):
for j in range(n + 1):
print(0)
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
cout << 0 << endl;
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
cout << 0 << endl;
}
}
}
```
=== "Java"
```java title=""
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
System.out.println(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
System.out.println(0);
}
}
}
```
=== "C#"
```csharp title=""
void Algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
Console.WriteLine(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
Console.WriteLine(0);
}
}
}
```
=== "Go"
```go title=""
func algorithm(n int) {
a := 1 // +0(技巧 1)
a = a + n // +0(技巧 1)
// +n(技巧 2)
for i := 0; i < 5 * n + 1; i++ {
fmt.Println(0)
}
// +n*n(技巧 3)
for i := 0; i < 2 * n; i++ {
for j := 0; j < n + 1; j++ {
fmt.Println(0)
}
}
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +0(技巧 1)
a = a + n // +0(技巧 1)
// +n(技巧 2)
for _ in 0 ..< (5 * n + 1) {
print(0)
}
// +n*n(技巧 3)
for _ in 0 ..< (2 * n) {
for _ in 0 ..< (n + 1) {
print(0)
}
}
}
```
=== "JS"
```javascript title=""
function algorithm(n) {
let a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n(技巧 3)
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
```
=== "TS"
```typescript title=""
function algorithm(n: number): void {
let a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n(技巧 3)
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
```
=== "Dart"
```dart title=""
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
print(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
print(0);
}
}
}
```
=== "Rust"
```rust title=""
fn algorithm(n: i32) {
let mut a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for i in 0..(5 * n + 1) {
println!("{}", 0);
}
// +n*n(技巧 3)
for i in 0..(2 * n) {
for j in 0..(n + 1) {
println!("{}", 0);
}
}
}
```
=== "C"
```c title=""
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
printf("%d", 0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
printf("%d", 0);
}
}
}
```
=== "Kotlin"
```kotlin title=""
fun algorithm(n: Int) {
var a = 1 // +0(技巧 1)
a = a + n // +0(技巧 1)
// +n(技巧 2)
for (i in 0..<5 * n + 1) {
println(0)
}
// +n*n(技巧 3)
for (i in 0..<2 * n) {
for (j in 0..<n + 1) {
println(0)
}
}
}
```
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +0(技巧 1)
a = a + n # +0(技巧 1)
# +n(技巧 2)
(0...(5 * n + 1)).each do { puts 0 }
# +n*n(技巧 3)
(0...(2 * n)).each do
(0...(n + 1)).each do { puts 0 }
end
end
```
=== "Zig"
```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +0(技巧 1)
a = a + @as(i32, @intCast(n)); // +0(技巧 1)
// +n(技巧 2)
for(0..(5 * n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
// +n*n(技巧 3)
for(0..(2 * n)) |_| {
for(0..(n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
}
}
```
以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 O(n^2)
。
\begin{aligned}
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
& = 2n^2 + 7n + 3 \newline
T(n) & = n^2 + n & \text{偷懒统计 (o.O)}
\end{aligned}
第二步:判断渐近上界
时间复杂度由 T(n)
中最高阶的项来决定。这是因为在 n
趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。
下表展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 n
趋于无穷大时,这些常数变得无足轻重。
表 不同操作数量对应的时间复杂度
操作数量 T(n) |
时间复杂度 O(f(n)) |
---|---|
100000 |
O(1) |
3n + 2 |
O(n) |
2n^2 + 3n + 2 |
O(n^2) |
n^3 + 10000n^2 |
O(n^3) |
2^n + 10000n^{10000} |
O(2^n) |
常见类型
设输入数据大小为 n
,常见的时间复杂度类型如下图所示(按照从低到高的顺序排列)。
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶}
\end{aligned}
常数阶 O(1)
常数阶的操作数量与输入数据大小 n
无关,即不随着 n
的变化而变化。
在以下函数中,尽管操作数量 size
可能很大,但由于其与输入数据大小 n
无关,因此时间复杂度仍为 O(1)
:
[file]{time_complexity}-[class]{}-[func]{constant}
线性阶 O(n)
线性阶的操作数量相对于输入数据大小 n
以线性级别增长。线性阶通常出现在单层循环中:
[file]{time_complexity}-[class]{}-[func]{linear}
遍历数组和遍历链表等操作的时间复杂度均为 O(n)
,其中 n
为数组或链表的长度:
[file]{time_complexity}-[class]{}-[func]{array_traversal}
值得注意的是,输入数据大小 n
需根据输入数据的类型来具体确定。比如在第一个示例中,变量 n
为输入数据大小;在第二个示例中,数组长度 n
为数据大小。
平方阶 O(n^2)
平方阶的操作数量相对于输入数据大小 n
以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 O(n)
,因此总体的时间复杂度为 O(n^2)
:
[file]{time_complexity}-[class]{}-[func]{quadratic}
下图对比了常数阶、线性阶和平方阶三种时间复杂度。
以冒泡排序为例,外层循环执行 n - 1
次,内层循环执行 n-1
、n-2
、\dots
、2
、1
次,平均为 n / 2
次,因此时间复杂度为 O((n - 1) n / 2) = O(n^2)
:
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
指数阶 O(2^n)
生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 1
个细胞,分裂一轮后变为 2
个,分裂两轮后变为 4
个,以此类推,分裂 n
轮后有 2^n
个细胞。
下图和以下代码模拟了细胞分裂的过程,时间复杂度为 O(2^n)
:
[file]{time_complexity}-[class]{}-[func]{exponential}
在实际算法中,指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 n
次分裂后停止:
[file]{time_complexity}-[class]{}-[func]{exp_recur}
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。
对数阶 O(\log n)
与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 n
,由于每轮缩减到一半,因此循环次数是 \log_2 n
,即 2^n
的反函数。
下图和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 O(\log_2 n)
,简记为 O(\log n)
:
[file]{time_complexity}-[class]{}-[func]{logarithmic}
与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一棵高度为 \log_2 n
的递归树:
[file]{time_complexity}-[class]{}-[func]{log_recur}
对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。
!!! tip "O(\log n)
的底数是多少?"
准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数、相等的时间复杂度:
$$
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
$$
也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。
线性对数阶 O(n \log n)
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 O(\log n)
和 O(n)
。相关代码如下:
[file]{time_complexity}-[class]{}-[func]{linear_log_recur}
下图展示了线性对数阶的生成方式。二叉树的每一层的操作总数都为 n
,树共有 \log_2 n + 1
层,因此时间复杂度为 O(n \log n)
。
主流排序算法的时间复杂度通常为 O(n \log n)
,例如快速排序、归并排序、堆排序等。
阶乘阶 O(n!)
阶乘阶对应数学上的“全排列”问题。给定 n
个互不重复的元素,求其所有可能的排列方案,方案数量为:
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
阶乘通常使用递归实现。如下图和以下代码所示,第一层分裂出 n
个,第二层分裂出 n - 1
个,以此类推,直至第 n
层时停止分裂:
[file]{time_complexity}-[class]{}-[func]{factorial_recur}
请注意,因为当 n \geq 4
时恒有 n! > 2^n
,所以阶乘阶比指数阶增长得更快,在 n
较大时也是不可接受的。
最差、最佳、平均时间复杂度
算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 n
的数组 nums
,其中 nums
由从 1
至 n
的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 1
的索引。我们可以得出以下结论。
- 当
nums = [?, ?, ..., 1]
,即当末尾元素是1
时,需要完整遍历数组,达到最差时间复杂度O(n)
。 - 当
nums = [1, ?, ?, ...]
,即当首个元素为1
时,无论数组多长都不需要继续遍历,达到最佳时间复杂度\Omega(1)
。
“最差时间复杂度”对应函数渐近上界,使用大 O
记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 \Omega
记号表示:
[file]{worst_best_time_complexity}-[class]{}-[func]{find_one}
值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。
从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的运行效率,用 \Theta
记号来表示。
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 1
出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 n / 2
,平均时间复杂度为 \Theta(n / 2) = \Theta(n)
。
但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
!!! question "为什么很少看到 \Theta
符号?"
可能由于 $O$ 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。