17 KiB
comments |
---|
true |
15.3 最大容量问题
!!! question
输入一个数组 $ht$ ,其中的每个元素代表一个垂直隔板的高度。数组中的任意两个隔板,以及它们之间的空间可以组成一个容器。
容器的容量等于高度和宽度的乘积(面积),其中高度由较短的隔板决定,宽度是两个隔板的数组索引之差。
请在数组中选择两个隔板,使得组成的容器的容量最大,返回最大容量。示例如图 15-7 所示。
图 15-7 最大容量问题的示例数据
容器由任意两个隔板围成,因此本题的状态为两个隔板的索引,记为 [i, j]
。
根据题意,容量等于高度乘以宽度,其中高度由短板决定,宽度是两隔板的数组索引之差。设容量为 cap[i, j]
,则可得计算公式:
cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
设数组长度为 n
,两个隔板的组合数量(状态总数)为 C_n^2 = \frac{n(n - 1)}{2}
个。最直接地,我们可以穷举所有状态,从而求得最大容量,时间复杂度为 O(n^2)
。
1. 贪心策略确定
这道题还有更高效率的解法。如图 15-8 所示,现选取一个状态 [i, j]
,其满足索引 i < j
且高度 ht[i] < ht[j]
,即 i
为短板、j
为长板。
图 15-8 初始状态
如图 15-9 所示,若此时将长板 j
向短板 i
靠近,则容量一定变小。
这是因为在移动长板 j
后,宽度 j-i
肯定变小;而高度由短板决定,因此高度只可能不变( i
仍为短板)或变小(移动后的 j
成为短板)。
图 15-9 向内移动长板后的状态
反向思考,我们只有向内收缩短板 i
,才有可能使容量变大。因为虽然宽度一定变小,但高度可能会变大(移动后的短板 i
可能会变长)。例如在图 15-10 中,移动短板后面积变大。
图 15-10 向内移动短板后的状态
由此便可推出本题的贪心策略:初始化两指针,使其分列容器两端,每轮向内收缩短板对应的指针,直至两指针相遇。
图 15-11 展示了贪心策略的执行过程。
- 初始状态下,指针
i
和j
分列数组两端。 - 计算当前状态的容量
cap[i, j]
,并更新最大容量。 - 比较板
i
和 板j
的高度,并将短板向内移动一格。 - 循环执行第
2.
步和第3.
步,直至i
和j
相遇时结束。
=== "<1>" { class="animation-figure" }
=== "<2>" { class="animation-figure" }
=== "<3>" { class="animation-figure" }
=== "<4>" { class="animation-figure" }
=== "<5>" { class="animation-figure" }
=== "<6>" { class="animation-figure" }
=== "<7>" { class="animation-figure" }
=== "<8>" { class="animation-figure" }
=== "<9>" { class="animation-figure" }
图 15-11 最大容量问题的贪心过程
2. 代码实现
代码循环最多 n
轮,因此时间复杂度为 O(n)
。
变量 i
、j
、res
使用常数大小的额外空间,因此空间复杂度为 O(1)
。
=== "Python"
```python title="max_capacity.py"
def max_capacity(ht: list[int]) -> int:
"""最大容量:贪心"""
# 初始化 i, j,使其分列数组两端
i, j = 0, len(ht) - 1
# 初始最大容量为 0
res = 0
# 循环贪心选择,直至两板相遇
while i < j:
# 更新最大容量
cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
# 向内移动短板
if ht[i] < ht[j]:
i += 1
else:
j -= 1
return res
```
=== "C++"
```cpp title="max_capacity.cpp"
/* 最大容量:贪心 */
int maxCapacity(vector<int> &ht) {
// 初始化 i, j,使其分列数组两端
int i = 0, j = ht.size() - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Java"
```java title="max_capacity.java"
/* 最大容量:贪心 */
int maxCapacity(int[] ht) {
// 初始化 i, j,使其分列数组两端
int i = 0, j = ht.length - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "C#"
```csharp title="max_capacity.cs"
/* 最大容量:贪心 */
int MaxCapacity(int[] ht) {
// 初始化 i, j,使其分列数组两端
int i = 0, j = ht.Length - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int cap = Math.Min(ht[i], ht[j]) * (j - i);
res = Math.Max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Go"
```go title="max_capacity.go"
/* 最大容量:贪心 */
func maxCapacity(ht []int) int {
// 初始化 i, j,使其分列数组两端
i, j := 0, len(ht)-1
// 初始最大容量为 0
res := 0
// 循环贪心选择,直至两板相遇
for i < j {
// 更新最大容量
capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)
res = int(math.Max(float64(res), float64(capacity)))
// 向内移动短板
if ht[i] < ht[j] {
i++
} else {
j--
}
}
return res
}
```
=== "Swift"
```swift title="max_capacity.swift"
/* 最大容量:贪心 */
func maxCapacity(ht: [Int]) -> Int {
// 初始化 i, j,使其分列数组两端
var i = ht.startIndex, j = ht.endIndex - 1
// 初始最大容量为 0
var res = 0
// 循环贪心选择,直至两板相遇
while i < j {
// 更新最大容量
let cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
// 向内移动短板
if ht[i] < ht[j] {
i += 1
} else {
j -= 1
}
}
return res
}
```
=== "JS"
```javascript title="max_capacity.js"
/* 最大容量:贪心 */
function maxCapacity(ht) {
// 初始化 i, j,使其分列数组两端
let i = 0,
j = ht.length - 1;
// 初始最大容量为 0
let res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
const cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "TS"
```typescript title="max_capacity.ts"
/* 最大容量:贪心 */
function maxCapacity(ht: number[]): number {
// 初始化 i, j,使其分列数组两端
let i = 0,
j = ht.length - 1;
// 初始最大容量为 0
let res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
const cap: number = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "Dart"
```dart title="max_capacity.dart"
/* 最大容量:贪心 */
int maxCapacity(List<int> ht) {
// 初始化 i, j,使其分列数组两端
int i = 0, j = ht.length - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Rust"
```rust title="max_capacity.rs"
/* 最大容量:贪心 */
fn max_capacity(ht: &[i32]) -> i32 {
// 初始化 i, j,使其分列数组两端
let mut i = 0;
let mut j = ht.len() - 1;
// 初始最大容量为 0
let mut res = 0;
// 循环贪心选择,直至两板相遇
while i < j {
// 更新最大容量
let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;
res = std::cmp::max(res, cap);
// 向内移动短板
if ht[i] < ht[j] {
i += 1;
} else {
j -= 1;
}
}
res
}
```
=== "C"
```c title="max_capacity.c"
/* 最大容量:贪心 */
int maxCapacity(int ht[], int htLength) {
// 初始化 i, j,使其分列数组两端
int i = 0;
int j = htLength - 1;
// 初始最大容量为 0
int res = 0;
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
int capacity = myMin(ht[i], ht[j]) * (j - i);
res = myMax(res, capacity);
// 向内移动短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Kotlin"
```kotlin title="max_capacity.kt"
/* 最大容量:贪心 */
fun maxCapacity(ht: IntArray): Int {
// 初始化 i, j,使其分列数组两端
var i = 0
var j = ht.size - 1
// 初始最大容量为 0
var res = 0
// 循环贪心选择,直至两板相遇
while (i < j) {
// 更新最大容量
val cap = (min(ht[i].toDouble(), ht[j].toDouble()) * (j - i)).toInt()
res = max(res.toDouble(), cap.toDouble()).toInt()
// 向内移动短板
if (ht[i] < ht[j]) {
i++
} else {
j--
}
}
return res
}
```
=== "Ruby"
```ruby title="max_capacity.rb"
[class]{}-[func]{max_capacity}
```
=== "Zig"
```zig title="max_capacity.zig"
[class]{}-[func]{maxCapacity}
```
??? pythontutor "可视化运行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i,%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E6%95%B0%E7%BB%84%E4%B8%A4%E7%AB%AF%0A%20%20%20%20i,%20j%20%3D%200,%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%EF%BC%8C%E7%9B%B4%E8%87%B3%E4%B8%A4%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D,%20ht%5Bj%5D%29%20*%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res,%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%86%85%E7%A7%BB%E5%8A%A8%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3,%208,%205,%202,%207,%207,%203,%204%5D%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B4%AA%E5%BF%83%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i,%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E6%95%B0%E7%BB%84%E4%B8%A4%E7%AB%AF%0A%20%20%20%20i,%20j%20%3D%200,%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E5%BE%AA%E7%8E%AF%E8%B4%AA%E5%BF%83%E9%80%89%E6%8B%A9%EF%BC%8C%E7%9B%B4%E8%87%B3%E4%B8%A4%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D,%20ht%5Bj%5D%29%20*%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res,%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%86%85%E7%A7%BB%E5%8A%A8%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3,%208,%205,%202,%207,%207,%203,%204%5D%0A%0A%20%20%20%20%23%20%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全屏观看 ></a></div>
3. 正确性证明
之所以贪心比穷举更快,是因为每轮的贪心选择都会“跳过”一些状态。
比如在状态 cap[i, j]
下,i
为短板、j
为长板。若贪心地将短板 i
向内移动一格,会导致图 15-12 所示的状态被“跳过”。这意味着之后无法验证这些状态的容量大小。
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
图 15-12 移动短板导致被跳过的状态
观察发现,这些被跳过的状态实际上就是将长板 j
向内移动的所有状态。前面我们已经证明内移长板一定会导致容量变小。也就是说,被跳过的状态都不可能是最优解,跳过它们不会导致错过最优解。
以上分析说明,移动短板的操作是“安全”的,贪心策略是有效的。