You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_searching/binary_search_insertion.md

92 lines
4.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 二分查找插入点
二分查找不仅可用于搜索目标元素,还可用于解决许多变种问题,比如搜索目标元素的插入位置。
## 无重复元素的情况
!!! question
给定一个长度为 $n$ 的有序数组 `nums` 和一个元素 `target` ,数组不存在重复元素。现将 `target` 插入数组 `nums` 中,并保持其有序性。若数组中已存在元素 `target` ,则插入到其左方。请返回插入后 `target` 在数组中的索引。示例如下图所示。
![二分查找插入点示例数据](binary_search_insertion.assets/binary_search_insertion_example.png)
如果想复用上一节的二分查找代码,则需要回答以下两个问题。
**问题一**:当数组中包含 `target` 时,插入点的索引是否是该元素的索引?
题目要求将 `target` 插入到相等元素的左边,这意味着新插入的 `target` 替换了原来 `target` 的位置。也就是说,**当数组包含 `target` 时,插入点的索引就是该 `target` 的索引**。
**问题二**:当数组中不存在 `target` 时,插入点是哪个元素的索引?
进一步思考二分查找过程:当 `nums[m] < target` 时 $i$ 移动,这意味着指针 $i$ 在向大于等于 `target` 的元素靠近。同理,指针 $j$ 始终在向小于等于 `target` 的元素靠近。
因此二分结束时一定有:$i$ 指向首个大于 `target` 的元素,$j$ 指向首个小于 `target` 的元素。**易得当数组不包含 `target` 时,插入索引为 $i$** 。代码如下所示:
```src
[file]{binary_search_insertion}-[class]{}-[func]{binary_search_insertion_simple}
```
## 存在重复元素的情况
!!! question
在上一题的基础上,规定数组可能包含重复元素,其余不变。
假设数组中存在多个 `target` ,则普通二分查找只能返回其中一个 `target` 的索引,**而无法确定该元素的左边和右边还有多少 `target`**。
题目要求将目标元素插入到最左边,**所以我们需要查找数组中最左一个 `target` 的索引**。初步考虑通过下图所示的步骤实现。
1. 执行二分查找,得到任意一个 `target` 的索引,记为 $k$ 。
2. 从索引 $k$ 开始,向左进行线性遍历,当找到最左边的 `target` 时返回。
![线性查找重复元素的插入点](binary_search_insertion.assets/binary_search_insertion_naive.png)
此方法虽然可用,但其包含线性查找,因此时间复杂度为 $O(n)$ 。当数组中存在很多重复的 `target` 时,该方法效率很低。
现考虑拓展二分查找代码。如下图所示,整体流程保持不变,每轮先计算中点索引 $m$ ,再判断 `target``nums[m]` 的大小关系,分为以下几种情况。
-`nums[m] < target``nums[m] > target` 时,说明还没有找到 `target` ,因此采用普通二分查找的缩小区间操作,**从而使指针 $i$ 和 $j$ 向 `target` 靠近**。
-`nums[m] == target` 时,说明小于 `target` 的元素在区间 $[i, m - 1]$ 中,因此采用 $j = m - 1$ 来缩小区间,**从而使指针 $j$ 向小于 `target` 的元素靠近**。
循环完成后,$i$ 指向最左边的 `target` $j$ 指向首个小于 `target` 的元素,**因此索引 $i$ 就是插入点**。
=== "<1>"
![二分查找重复元素的插入点的步骤](binary_search_insertion.assets/binary_search_insertion_step1.png)
=== "<2>"
![binary_search_insertion_step2](binary_search_insertion.assets/binary_search_insertion_step2.png)
=== "<3>"
![binary_search_insertion_step3](binary_search_insertion.assets/binary_search_insertion_step3.png)
=== "<4>"
![binary_search_insertion_step4](binary_search_insertion.assets/binary_search_insertion_step4.png)
=== "<5>"
![binary_search_insertion_step5](binary_search_insertion.assets/binary_search_insertion_step5.png)
=== "<6>"
![binary_search_insertion_step6](binary_search_insertion.assets/binary_search_insertion_step6.png)
=== "<7>"
![binary_search_insertion_step7](binary_search_insertion.assets/binary_search_insertion_step7.png)
=== "<8>"
![binary_search_insertion_step8](binary_search_insertion.assets/binary_search_insertion_step8.png)
观察以下代码,判断分支 `nums[m] > target``nums[m] == target` 的操作相同,因此两者可以合并。
即便如此,我们仍然可以将判断条件保持展开,因为其逻辑更加清晰、可读性更好。
```src
[file]{binary_search_insertion}-[class]{}-[func]{binary_search_insertion}
```
!!! tip
本节的代码都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。
总的来看,二分查找无非就是给指针 $i$ 和 $j$ 分别设定搜索目标,目标可能是一个具体的元素(例如 `target` ),也可能是一个元素范围(例如小于 `target` 的元素)。
在不断的循环二分中,指针 $i$ 和 $j$ 都逐渐逼近预先设定的目标。最终,它们或是成功找到答案,或是越过边界后停止。