You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_dynamic_programming/dp_solution_pipeline.md

182 lines
8.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 动态规划解题思路
上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题。
1. 如何判断一个问题是不是动态规划问题?
2. 求解动态规划问题该从何处入手,完整步骤是什么?
## 问题判断
总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解。然而,我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,**先观察问题是否适合使用回溯(穷举)解决**。
**适合用回溯解决的问题通常满足“决策树模型”**,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。
换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。
在此基础上,动态规划问题还有一些判断的“加分项”。
- 问题包含最大(小)或最多(少)等最优化描述。
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在递推关系。
相应地,也存在一些“减分项”。
- 问题的目标是找出所有可能的解决方案,而不是找出最优解。
- 问题描述中有明显的排列组合的特征,需要返回具体的多个方案。
如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
## 问题求解步骤
动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 $dp$ 表,推导状态转移方程,确定边界条件等。
为了更形象地展示解题步骤,我们使用一个经典问题“最小路径和”来举例。
!!! question
给定一个 $n \times m$ 的二维网格 `grid` ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。
下图展示了一个例子,给定网格的最小路径和为 $13$ 。
![最小路径和示例数据](dp_solution_pipeline.assets/min_path_sum_example.png)
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
本题的每一轮的决策就是从当前格子向下或向右一步。设当前格子的行列索引为 $[i, j]$ ,则向下或向右走一步后,索引变为 $[i+1, j]$ 或 $[i, j+1]$ 。因此,状态应包含行索引和列索引两个变量,记为 $[i, j]$ 。
状态 $[i, j]$ 对应的子问题为:从起始点 $[0, 0]$ 走到 $[i, j]$ 的最小路径和,解记为 $dp[i, j]$ 。
至此,我们就得到了下图所示的二维 $dp$ 矩阵,其尺寸与输入网格 $grid$ 相同。
![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_step1.png)
!!! note
动态规划和回溯过程可以被描述为一个决策序列,而状态由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。
每个状态都对应一个子问题,我们会定义一个 $dp$ 表来存储所有子问题的解,状态的每个独立变量都是 $dp$ 表的一个维度。本质上看,$dp$ 表是状态和子问题的解之间的映射。
**第二步:找出最优子结构,进而推导出状态转移方程**
对于状态 $[i, j]$ ,它只能从上边格子 $[i-1, j]$ 和左边格子 $[i, j-1]$ 转移而来。因此最优子结构为:到达 $[i, j]$ 的最小路径和由 $[i, j-1]$ 的最小路径和与 $[i-1, j]$ 的最小路径和,这两者较小的那一个决定。
根据以上分析,可推出下图所示的状态转移方程:
$$
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
$$
![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_step2.png)
!!! note
根据定义好的 $dp$ 表,思考原问题和子问题的关系,找出通过子问题的最优解来构造原问题的最优解的方法,即最优子结构。
一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。
**第三步:确定边界条件和状态转移顺序**
在本题中,首行的状态只能从其左边的状态得来,首列的状态只能从其上边的状态得来,因此首行 $i = 0$ 和首列 $j = 0$ 是边界条件。
如下图所示,由于每个格子是由其左方格子和上方格子转移而来,因此我们使用采用循环来遍历矩阵,外循环遍历各行、内循环遍历各列。
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_step3.png)
!!! note
边界条件在动态规划中用于初始化 $dp$ 表,在搜索中用于剪枝。
状态转移顺序的核心是要保证在计算当前问题的解时,所有它依赖的更小子问题的解都已经被正确地计算出来。
根据以上分析,我们已经可以直接写出动态规划代码。然而子问题分解是一种从顶至底的思想,因此按照“暴力搜索 $\rightarrow$ 记忆化搜索 $\rightarrow$ 动态规划”的顺序实现更加符合思维习惯。
### 方法一:暴力搜索
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ ,递归函数包括以下要素。
- **递归参数**:状态 $[i, j]$ 。
- **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$ 。
- **终止条件**:当 $i = 0$ 且 $j = 0$ 时,返回代价 $grid[0, 0]$ 。
- **剪枝**:当 $i < 0$ 时或 $j < 0$ 时索引越界,此时返回代价 $+\infty$ ,代表不可行。
```src
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs}
```
下图给出了以 $dp[2, 1]$ 为根节点的递归树,其中包含一些重叠子问题,其数量会随着网格 `grid` 的尺寸变大而急剧增多。
本质上看,造成重叠子问题的原因为:**存在多条路径可以从左上角到达某一单元格**。
![暴力搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs.png)
每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 $m + n - 2$ 步,所以最差时间复杂度为 $O(2^{m + n})$ 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择。因此实际的路径数量会少一些。
### 方法二:记忆化搜索
我们引入一个和网格 `grid` 相同尺寸的记忆列表 `mem` ,用于记录各个子问题的解,并将重叠子问题进行剪枝。
```src
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs_mem}
```
如下图所示,在引入记忆化后,所有子问题的解只需计算一次,因此时间复杂度取决于状态总数,即网格尺寸 $O(nm)$
![记忆化搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs_mem.png)
### 方法三:动态规划
基于迭代实现动态规划解法。
```src
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp}
```
下图展示了最小路径和的状态转移过程,其遍历了整个网格,**因此时间复杂度为 $O(nm)$**
数组 `dp` 大小为 $n \times m$ **因此空间复杂度为 $O(nm)$**
=== "<1>"
![最小路径和的动态规划过程](dp_solution_pipeline.assets/min_path_sum_dp_step1.png)
=== "<2>"
![min_path_sum_dp_step2](dp_solution_pipeline.assets/min_path_sum_dp_step2.png)
=== "<3>"
![min_path_sum_dp_step3](dp_solution_pipeline.assets/min_path_sum_dp_step3.png)
=== "<4>"
![min_path_sum_dp_step4](dp_solution_pipeline.assets/min_path_sum_dp_step4.png)
=== "<5>"
![min_path_sum_dp_step5](dp_solution_pipeline.assets/min_path_sum_dp_step5.png)
=== "<6>"
![min_path_sum_dp_step6](dp_solution_pipeline.assets/min_path_sum_dp_step6.png)
=== "<7>"
![min_path_sum_dp_step7](dp_solution_pipeline.assets/min_path_sum_dp_step7.png)
=== "<8>"
![min_path_sum_dp_step8](dp_solution_pipeline.assets/min_path_sum_dp_step8.png)
=== "<9>"
![min_path_sum_dp_step9](dp_solution_pipeline.assets/min_path_sum_dp_step9.png)
=== "<10>"
![min_path_sum_dp_step10](dp_solution_pipeline.assets/min_path_sum_dp_step10.png)
=== "<11>"
![min_path_sum_dp_step11](dp_solution_pipeline.assets/min_path_sum_dp_step11.png)
=== "<12>"
![min_path_sum_dp_step12](dp_solution_pipeline.assets/min_path_sum_dp_step12.png)
### 空间优化
由于每个格子只与其左边和上边的格子有关,因此我们可以只用一个单行数组来实现 $dp$ 表。
请注意,因为数组 `dp` 只能表示一行的状态,所以我们无法提前初始化首列状态,而是在遍历每行中更新它。
```src
[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp_comp}
```