You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_dynamic_programming/intro_to_dynamic_programmin...

6.4 KiB

初探动态规划

「动态规划 dynamic programming」是一个重要的算法范式它将一个问题分解为一系列更小的子问题并通过存储子问题的解来避免重复计算从而大幅提升时间效率。

在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。

!!! question "爬楼梯"

给定一个共有 $n$ 阶的楼梯,你每步可以上 $1$ 阶或者 $2$ 阶,请问有多少种方案可以爬到楼顶。

如下图所示,对于一个 3 阶楼梯,共有 3 种方案可以爬到楼顶。

爬到第 3 阶的方案数量

本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 1 阶或 2 阶,每当到达楼梯顶部时就将方案数量加 1 ,当越过楼梯顶部时就将其剪枝。

[file]{climbing_stairs_backtrack}-[class]{}-[func]{climbing_stairs_backtrack}

方法一:暴力搜索

回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。

我们可以尝试从问题分解的角度分析这道题。设爬到第 i 阶共有 dp[i] 种方案,那么 dp[i] 就是原问题,其子问题包括:


dp[i-1], dp[i-2], \dots, dp[2], dp[1]

由于每轮只能上 1 阶或 2 阶,因此当我们站在第 i 阶楼梯上时,上一轮只可能站在第 i - 1 阶或第 i - 2 阶上。换句话说,我们只能从第 i -1 阶或第 i - 2 阶前往第 i 阶。

由此便可得出一个重要推论:爬到第 i - 1 阶的方案数加上爬到第 i - 2 阶的方案数就等于爬到第 i 阶的方案数。公式如下:


dp[i] = dp[i-1] + dp[i-2]

这意味着在爬楼梯问题中,各个子问题之间存在递推关系,原问题的解可以由子问题的解构建得来。下图展示了该递推关系。

方案数量递推关系

我们可以根据递推公式得到暴力搜索解法。以 dp[n] 为起始点,递归地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 dp[1]dp[2] 时返回。其中,最小子问题的解是已知的,即 dp[1] = 1dp[2] = 2 ,表示爬到第 12 阶分别有 12 种方案。

观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。

[file]{climbing_stairs_dfs}-[class]{}-[func]{climbing_stairs_dfs}

下图展示了暴力搜索形成的递归树。对于问题 dp[n] ,其递归树的深度为 n ,时间复杂度为 O(2^n) 。指数阶属于爆炸式增长,如果我们输入一个比较大的 n ,则会陷入漫长的等待之中。

爬楼梯对应递归树

观察上图,指数阶的时间复杂度是由于“重叠子问题”导致的。例如 dp[9] 被分解为 dp[8]dp[7] dp[8] 被分解为 dp[7]dp[6] ,两者都包含子问题 dp[7]

以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的问题上。

方法二:记忆化搜索

为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。

  1. 当首次计算 dp[i] 时,我们将其记录至 mem[i] ,以便之后使用。
  2. 当再次需要计算 dp[i] 时,我们便可直接从 mem[i] 中获取结果,从而避免重复计算该子问题。
[file]{climbing_stairs_dfs_mem}-[class]{}-[func]{climbing_stairs_dfs_mem}

观察下图,经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 O(n) ,这是一个巨大的飞跃。

记忆化搜索对应递归树

方法三:动态规划

记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯将子问题的解逐层收集,构建出原问题的解。

与之相反,动态规划是一种“从底至顶”的方法:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。

由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 dp 来存储子问题的解,它起到了记忆化搜索中数组 mem 相同的记录作用。

[file]{climbing_stairs_dp}-[class]{}-[func]{climbing_stairs_dp}

下图模拟了以上代码的执行过程。

爬楼梯的动态规划过程

与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 i

根据以上内容,我们可以总结出动态规划的常用术语。

  • 将数组 dp 称为「dp 表」,dp[i] 表示状态 i 对应子问题的解。
  • 将最小子问题对应的状态(即第 12 阶楼梯)称为「初始状态」。
  • 将递推公式 dp[i] = dp[i-1] + dp[i-2] 称为「状态转移方程」。

空间优化

细心的你可能发现,由于 dp[i] 只与 dp[i-1]dp[i-2] 有关,因此我们无须使用一个数组 dp 来存储所有子问题的解,而只需两个变量滚动前进即可。

[file]{climbing_stairs_dp}-[class]{}-[func]{climbing_stairs_dp_comp}

观察以上代码,由于省去了数组 dp 占用的空间,因此空间复杂度从 O(n) 降低至 O(1)

在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。这种空间优化技巧被称为“滚动变量”或“滚动数组”