|
|
"""
|
|
|
File: heap.py
|
|
|
Created Time: 2023-02-23
|
|
|
Author: Krahets (krahets@163.com)
|
|
|
"""
|
|
|
|
|
|
import sys, os.path as osp
|
|
|
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
|
|
from modules import *
|
|
|
|
|
|
def test_push(heap, val, flag=1):
|
|
|
heapq.heappush(heap, flag * val) # 元素入堆
|
|
|
print(f"\n元素 {val} 入堆后")
|
|
|
print_heap([flag * val for val in heap])
|
|
|
|
|
|
def test_pop(heap, flag=1):
|
|
|
val = flag * heapq.heappop(heap) # 堆顶元素出堆
|
|
|
print(f"\n堆顶元素 {val} 出堆后")
|
|
|
print_heap([flag * val for val in heap])
|
|
|
|
|
|
""" Driver Code """
|
|
|
if __name__ == "__main__":
|
|
|
# 初始化小顶堆
|
|
|
min_heap, flag = [], 1
|
|
|
# 初始化大顶堆
|
|
|
max_heap, flag = [], -1
|
|
|
|
|
|
print("\n以下测试样例为大顶堆")
|
|
|
# Python 的 heapq 模块默认实现小顶堆
|
|
|
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
|
|
|
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆
|
|
|
""" 元素入堆 """
|
|
|
test_push(max_heap, 1, flag)
|
|
|
test_push(max_heap, 3, flag)
|
|
|
test_push(max_heap, 2, flag)
|
|
|
test_push(max_heap, 5, flag)
|
|
|
test_push(max_heap, 4, flag)
|
|
|
|
|
|
""" 获取堆顶元素 """
|
|
|
peek = flag * max_heap[0]
|
|
|
print(f"\n堆顶元素为 {peek}")
|
|
|
|
|
|
""" 堆顶元素出堆 """
|
|
|
test_pop(max_heap, flag)
|
|
|
test_pop(max_heap, flag)
|
|
|
test_pop(max_heap, flag)
|
|
|
test_pop(max_heap, flag)
|
|
|
test_pop(max_heap, flag)
|
|
|
|
|
|
""" 获取堆大小 """
|
|
|
size = len(max_heap)
|
|
|
print(f"\n堆元素数量为 {size}")
|
|
|
|
|
|
""" 判断堆是否为空 """
|
|
|
is_empty = not max_heap
|
|
|
print(f"\n堆是否为空 {is_empty}")
|
|
|
|
|
|
""" 输入列表并建堆 """
|
|
|
# 时间复杂度为 O(n) ,而非 O(nlogn)
|
|
|
min_heap = [1, 3, 2, 5, 4]
|
|
|
heapq.heapify(min_heap)
|
|
|
print("\n输入列表并建立小顶堆后")
|
|
|
print_heap(min_heap)
|