You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
# 小結
- 動態規劃對問題進行分解,並透過儲存子問題的解來規避重複計算,提高計算效率。
- 不考慮時間的前提下,所有動態規劃問題都可以用回溯(暴力搜尋)進行求解,但遞迴樹中存在大量的重疊子問題,效率極低。透過引入記憶化串列,可以儲存所有計算過的子問題的解,從而保證重疊子問題只被計算一次。
- 記憶化搜尋是一種從頂至底的遞迴式解法,而與之對應的動態規劃是一種從底至頂的遞推式解法,其如同“填寫表格”一樣。由於當前狀態僅依賴某些區域性狀態,因此我們可以消除 $dp$ 表的一個維度,從而降低空間複雜度。
- 子問題分解是一種通用的演算法思路,在分治、動態規劃、回溯中具有不同的性質。
- 動態規劃問題有三大特性:重疊子問題、最優子結構、無後效性。
- 如果原問題的最優解可以從子問題的最優解構建得來,則它就具有最優子結構。
- 無後效性指對於一個狀態,其未來發展只與該狀態有關,而與過去經歷的所有狀態無關。許多組合最佳化問題不具有無後效性,無法使用動態規劃快速求解。
** 背包問題**
- 背包問題是最典型的動態規劃問題之一,具有 0-1 背包、完全背包、多重背包等變種。
- 0-1 背包的狀態定義為前 $i$ 個物品在容量為 $c$ 的背包中的最大價值。根據不放入背包和放入背包兩種決策,可得到最優子結構,並構建出狀態轉移方程。在空間最佳化中,由於每個狀態依賴正上方和左上方的狀態,因此需要倒序走訪串列,避免左上方狀態被覆蓋。
- 完全背包問題的每種物品的選取數量無限制,因此選擇放入物品的狀態轉移與 0-1 背包問題不同。由於狀態依賴正上方和正左方的狀態,因此在空間最佳化中應當正序走訪。
- 零錢兌換問題是完全背包問題的一個變種。它從求“最大”價值變為求“最小”硬幣數量,因此狀態轉移方程中的 $\max()$ 應改為 $\min()$ 。從追求“不超過”背包容量到追求“恰好”湊出目標金額,因此使用 $amt + 1$ 來表示“無法湊出目標金額”的無效解。
- 零錢兌換問題 II 從求“最少硬幣數量”改為求“硬幣組合數量”,狀態轉移方程相應地從 $\min()$ 改為求和運算子。
** 編輯距離問題**
- 編輯距離( Levenshtein 距離)用於衡量兩個字串之間的相似度,其定義為從一個字串到另一個字串的最少編輯步數,編輯操作包括新增、刪除、替換。
- 編輯距離問題的狀態定義為將 $s$ 的前 $i$ 個字元更改為 $t$ 的前 $j$ 個字元所需的最少編輯步數。當 $s[i] \ne t[j]$ 時,具有三種決策:新增、刪除、替換,它們都有相應的剩餘子問題。據此便可以找出最優子結構與構建狀態轉移方程。而當 $s[i] = t[j]$ 時,無須編輯當前字元。
- 在編輯距離中,狀態依賴其正上方、正左方、左上方的狀態,因此空間最佳化後正序或倒序走訪都無法正確地進行狀態轉移。為此,我們利用一個變數暫存左上方狀態,從而轉化到與完全背包問題等價的情況,可以在空間最佳化後進行正序走訪。