You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-Hant/docs/chapter_greedy/max_capacity_problem.md

452 lines
18 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
---
# 15.3   最大容量問題
!!! question
輸入一個陣列 $ht$ ,其中的每個元素代表一個垂直隔板的高度。陣列中的任意兩個隔板,以及它們之間的空間可以組成一個容器。
容器的容量等於高度和寬度的乘積(面積),其中高度由較短的隔板決定,寬度是兩個隔板的陣列索引之差。
請在陣列中選擇兩個隔板,使得組成的容器的容量最大,返回最大容量。示例如圖 15-7 所示。
![最大容量問題的示例資料](max_capacity_problem.assets/max_capacity_example.png){ class="animation-figure" }
<p align="center"> 圖 15-7 &nbsp; 最大容量問題的示例資料 </p>
容器由任意兩個隔板圍成,**因此本題的狀態為兩個隔板的索引,記為 $[i, j]$** 。
根據題意,容量等於高度乘以寬度,其中高度由短板決定,寬度是兩隔板的陣列索引之差。設容量為 $cap[i, j]$ ,則可得計算公式:
$$
cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
$$
設陣列長度為 $n$ ,兩個隔板的組合數量(狀態總數)為 $C_n^2 = \frac{n(n - 1)}{2}$ 個。最直接地,**我們可以窮舉所有狀態**,從而求得最大容量,時間複雜度為 $O(n^2)$ 。
### 1. &nbsp; 貪婪策略確定
這道題還有更高效率的解法。如圖 15-8 所示,現選取一個狀態 $[i, j]$ ,其滿足索引 $i < j$ 且高度 $ht[i] < ht[j]$ ,即 $i$ 為短板、$j$ 為長板。
![初始狀態](max_capacity_problem.assets/max_capacity_initial_state.png){ class="animation-figure" }
<p align="center"> 圖 15-8 &nbsp; 初始狀態 </p>
如圖 15-9 所示,**若此時將長板 $j$ 向短板 $i$ 靠近,則容量一定變小**。
這是因為在移動長板 $j$ 後,寬度 $j-i$ 肯定變小;而高度由短板決定,因此高度只可能不變( $i$ 仍為短板)或變小(移動後的 $j$ 成為短板)。
![向內移動長板後的狀態](max_capacity_problem.assets/max_capacity_moving_long_board.png){ class="animation-figure" }
<p align="center"> 圖 15-9 &nbsp; 向內移動長板後的狀態 </p>
反向思考,**我們只有向內收縮短板 $i$ ,才有可能使容量變大**。因為雖然寬度一定變小,**但高度可能會變大**(移動後的短板 $i$ 可能會變長)。例如在圖 15-10 中,移動短板後面積變大。
![向內移動短板後的狀態](max_capacity_problem.assets/max_capacity_moving_short_board.png){ class="animation-figure" }
<p align="center"> 圖 15-10 &nbsp; 向內移動短板後的狀態 </p>
由此便可推出本題的貪婪策略:初始化兩指標,使其分列容器兩端,每輪向內收縮短板對應的指標,直至兩指標相遇。
圖 15-11 展示了貪婪策略的執行過程。
1. 初始狀態下,指標 $i$ 和 $j$ 分列陣列兩端。
2. 計算當前狀態的容量 $cap[i, j]$ ,並更新最大容量。
3. 比較板 $i$ 和 板 $j$ 的高度,並將短板向內移動一格。
4. 迴圈執行第 `2.` 步和第 `3.` 步,直至 $i$ 和 $j$ 相遇時結束。
=== "<1>"
![最大容量問題的貪婪過程](max_capacity_problem.assets/max_capacity_greedy_step1.png){ class="animation-figure" }
=== "<2>"
![max_capacity_greedy_step2](max_capacity_problem.assets/max_capacity_greedy_step2.png){ class="animation-figure" }
=== "<3>"
![max_capacity_greedy_step3](max_capacity_problem.assets/max_capacity_greedy_step3.png){ class="animation-figure" }
=== "<4>"
![max_capacity_greedy_step4](max_capacity_problem.assets/max_capacity_greedy_step4.png){ class="animation-figure" }
=== "<5>"
![max_capacity_greedy_step5](max_capacity_problem.assets/max_capacity_greedy_step5.png){ class="animation-figure" }
=== "<6>"
![max_capacity_greedy_step6](max_capacity_problem.assets/max_capacity_greedy_step6.png){ class="animation-figure" }
=== "<7>"
![max_capacity_greedy_step7](max_capacity_problem.assets/max_capacity_greedy_step7.png){ class="animation-figure" }
=== "<8>"
![max_capacity_greedy_step8](max_capacity_problem.assets/max_capacity_greedy_step8.png){ class="animation-figure" }
=== "<9>"
![max_capacity_greedy_step9](max_capacity_problem.assets/max_capacity_greedy_step9.png){ class="animation-figure" }
<p align="center"> 圖 15-11 &nbsp; 最大容量問題的貪婪過程 </p>
### 2. &nbsp; 程式碼實現
程式碼迴圈最多 $n$ 輪,**因此時間複雜度為 $O(n)$** 。
變數 $i$、$j$、$res$ 使用常數大小的額外空間,**因此空間複雜度為 $O(1)$** 。
=== "Python"
```python title="max_capacity.py"
def max_capacity(ht: list[int]) -> int:
"""最大容量:貪婪"""
# 初始化 i, j使其分列陣列兩端
i, j = 0, len(ht) - 1
# 初始最大容量為 0
res = 0
# 迴圈貪婪選擇,直至兩板相遇
while i < j:
# 更新最大容量
cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
# 向內移動短板
if ht[i] < ht[j]:
i += 1
else:
j -= 1
return res
```
=== "C++"
```cpp title="max_capacity.cpp"
/* 最大容量:貪婪 */
int maxCapacity(vector<int> &ht) {
// 初始化 i, j使其分列陣列兩端
int i = 0, j = ht.size() - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Java"
```java title="max_capacity.java"
/* 最大容量:貪婪 */
int maxCapacity(int[] ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "C#"
```csharp title="max_capacity.cs"
/* 最大容量:貪婪 */
int MaxCapacity(int[] ht) {
// 初始化 i, j,使其分列陣列兩端
int i = 0, j = ht.Length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = Math.Min(ht[i], ht[j]) * (j - i);
res = Math.Max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Go"
```go title="max_capacity.go"
/* 最大容量:貪婪 */
func maxCapacity(ht []int) int {
// 初始化 i, j,使其分列陣列兩端
i, j := 0, len(ht)-1
// 初始最大容量為 0
res := 0
// 迴圈貪婪選擇,直至兩板相遇
for i < j {
// 更新最大容量
capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)
res = int(math.Max(float64(res), float64(capacity)))
// 向內移動短板
if ht[i] < ht[j] {
i++
} else {
j--
}
}
return res
}
```
=== "Swift"
```swift title="max_capacity.swift"
/* 最大容量:貪婪 */
func maxCapacity(ht: [Int]) -> Int {
// 初始化 i, j使其分列陣列兩端
var i = ht.startIndex, j = ht.endIndex - 1
// 初始最大容量為 0
var res = 0
// 迴圈貪婪選擇,直至兩板相遇
while i < j {
// 更新最大容量
let cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
// 向內移動短板
if ht[i] < ht[j] {
i += 1
} else {
j -= 1
}
}
return res
}
```
=== "JS"
```javascript title="max_capacity.js"
/* 最大容量:貪婪 */
function maxCapacity(ht) {
// 初始化 i, j,使其分列陣列兩端
let i = 0,
j = ht.length - 1;
// 初始最大容量為 0
let res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
const cap = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "TS"
```typescript title="max_capacity.ts"
/* 最大容量:貪婪 */
function maxCapacity(ht: number[]): number {
// 初始化 i, j,使其分列陣列兩端
let i = 0,
j = ht.length - 1;
// 初始最大容量為 0
let res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
const cap: number = Math.min(ht[i], ht[j]) * (j - i);
res = Math.max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i += 1;
} else {
j -= 1;
}
}
return res;
}
```
=== "Dart"
```dart title="max_capacity.dart"
/* 最大容量:貪婪 */
int maxCapacity(List<int> ht) {
// 初始化 i, j使其分列陣列兩端
int i = 0, j = ht.length - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Rust"
```rust title="max_capacity.rs"
/* 最大容量:貪婪 */
fn max_capacity(ht: &[i32]) -> i32 {
// 初始化 i, j使其分列陣列兩端
let mut i = 0;
let mut j = ht.len() - 1;
// 初始最大容量為 0
let mut res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while i < j {
// 更新最大容量
let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;
res = std::cmp::max(res, cap);
// 向內移動短板
if ht[i] < ht[j] {
i += 1;
} else {
j -= 1;
}
}
res
}
```
=== "C"
```c title="max_capacity.c"
/* 最大容量:貪婪 */
int maxCapacity(int ht[], int htLength) {
// 初始化 i, j,使其分列陣列兩端
int i = 0;
int j = htLength - 1;
// 初始最大容量為 0
int res = 0;
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
int capacity = myMin(ht[i], ht[j]) * (j - i);
res = myMax(res, capacity);
// 向內移動短板
if (ht[i] < ht[j]) {
i++;
} else {
j--;
}
}
return res;
}
```
=== "Kotlin"
```kotlin title="max_capacity.kt"
/* 最大容量:貪婪 */
fun maxCapacity(ht: IntArray): Int {
// 初始化 i, j,使其分列陣列兩端
var i = 0
var j = ht.size - 1
// 初始最大容量為 0
var res = 0
// 迴圈貪婪選擇,直至兩板相遇
while (i < j) {
// 更新最大容量
val cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
// 向內移動短板
if (ht[i] < ht[j]) {
i++
} else {
j--
}
}
return res
}
```
=== "Ruby"
```ruby title="max_capacity.rb"
### 最大容量:貪婪 ###
def max_capacity(ht)
# 初始化 i, j,使其分列陣列兩端
i, j = 0, ht.length - 1
# 初始最大容量為 0
res = 0
# 迴圈貪婪選擇,直至兩板相遇
while i < j
# 更新最大容量
cap = [ht[i], ht[j]].min * (j - i)
res = [res, cap].max
# 向內移動短板
if ht[i] < ht[j]
i += 1
else
j -= 1
end
end
res
end
```
=== "Zig"
```zig title="max_capacity.zig"
[class]{}-[func]{maxCapacity}
```
??? pythontutor "視覺化執行"
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B2%AA%E5%A9%AA%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i%2C%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E9%99%A3%E5%88%97%E5%85%A9%E7%AB%AF%0A%20%20%20%20i%2C%20j%20%3D%200%2C%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E8%B2%AA%E5%A9%AA%E9%81%B8%E6%93%87%EF%BC%8C%E7%9B%B4%E8%87%B3%E5%85%A9%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D%2C%20ht%5Bj%5D%29%20%2A%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res%2C%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%85%A7%E7%A7%BB%E5%8B%95%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3%2C%208%2C%205%2C%202%2C%207%2C%207%2C%203%2C%204%5D%0A%0A%20%20%20%20%23%20%E8%B2%AA%E5%A9%AA%E6%BC%94%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20max_capacity%28ht%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%EF%BC%9A%E8%B2%AA%E5%A9%AA%22%22%22%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20i%2C%20j%EF%BC%8C%E4%BD%BF%E5%85%B6%E5%88%86%E5%88%97%E9%99%A3%E5%88%97%E5%85%A9%E7%AB%AF%0A%20%20%20%20i%2C%20j%20%3D%200%2C%20len%28ht%29%20-%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%200%0A%20%20%20%20res%20%3D%200%0A%20%20%20%20%23%20%E8%BF%B4%E5%9C%88%E8%B2%AA%E5%A9%AA%E9%81%B8%E6%93%87%EF%BC%8C%E7%9B%B4%E8%87%B3%E5%85%A9%E6%9D%BF%E7%9B%B8%E9%81%87%0A%20%20%20%20while%20i%20%3C%20j%3A%0A%20%20%20%20%20%20%20%20%23%20%E6%9B%B4%E6%96%B0%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%0A%20%20%20%20%20%20%20%20cap%20%3D%20min%28ht%5Bi%5D%2C%20ht%5Bj%5D%29%20%2A%20%28j%20-%20i%29%0A%20%20%20%20%20%20%20%20res%20%3D%20max%28res%2C%20cap%29%0A%20%20%20%20%20%20%20%20%23%20%E5%90%91%E5%85%A7%E7%A7%BB%E5%8B%95%E7%9F%AD%E6%9D%BF%0A%20%20%20%20%20%20%20%20if%20ht%5Bi%5D%20%3C%20ht%5Bj%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20i%20%2B%3D%201%0A%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20j%20-%3D%201%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20ht%20%3D%20%5B3%2C%208%2C%205%2C%202%2C%207%2C%207%2C%203%2C%204%5D%0A%0A%20%20%20%20%23%20%E8%B2%AA%E5%A9%AA%E6%BC%94%E7%AE%97%E6%B3%95%0A%20%20%20%20res%20%3D%20max_capacity%28ht%29%0A%20%20%20%20print%28f%22%E6%9C%80%E5%A4%A7%E5%AE%B9%E9%87%8F%E7%82%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
### 3. &nbsp; 正確性證明
之所以貪婪比窮舉更快,是因為每輪的貪婪選擇都會“跳過”一些狀態。
比如在狀態 $cap[i, j]$ 下,$i$ 為短板、$j$ 為長板。若貪婪地將短板 $i$ 向內移動一格,會導致圖 15-12 所示的狀態被“跳過”。**這意味著之後無法驗證這些狀態的容量大小**。
$$
cap[i, i+1], cap[i, i+2], \dots, cap[i, j-2], cap[i, j-1]
$$
![移動短板導致被跳過的狀態](max_capacity_problem.assets/max_capacity_skipped_states.png){ class="animation-figure" }
<p align="center"> 圖 15-12 &nbsp; 移動短板導致被跳過的狀態 </p>
觀察發現,**這些被跳過的狀態實際上就是將長板 $j$ 向內移動的所有狀態**。前面我們已經證明內移長板一定會導致容量變小。也就是說,被跳過的狀態都不可能是最優解,**跳過它們不會導致錯過最優解**。
以上分析說明,移動短板的操作是“安全”的,貪婪策略是有效的。